ارزیابی مقایسه‌ای تأثیرخاکستربادی و میکروسیلیس بر روی روند رشد، مقاومت فشاری و مقاومت الکتریکی بتن‌های در معرض آب‌های ‌کلردار

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی عمران ، واحد تبریز،دانشگاه آزاد اسلامی ، تبریز، ایران

2 گروه عمران - دانشکده فنی و مهندسی - دانشگاه آزاد اسلامی واحد تبریز - تبریز - ایران

3 گروه مهندسی عمران، واحد تبریز ، دانشگاه آزاد اسلامی، تبریز، ایران

چکیده

یکی از شایع‌ترین خوردگی‌ها، ناشی از یون‌های کلراید می‌باشد و یون‌های کلراید می‌توانند از طریق سنگدانه‌های آلوده و مواد افزودنی یا نفوذ از منابع خارجی مانند آب‌دریا وارد بتن شوند و اگر بتن تحت آن قرار بگیرد، علاوه بر افت شدید دوام و توسعه خوردگی، شاهد تأثیر محسوس بر روی روند رشد مقاومت و حتی کاهش مقاومت خواهد شد که تحقیق حاضر به بررسی، ارزیابی‌ مقایسه‌ای تأثیر خاکستربادی و میکروسیلیس بر روی روند رشد، مقاومت فشاری و مقاومت‌ الکتریکی بتن‌های ‌در معرض‌ آب‌های ‌کلردار پرداخته است. طرح‌های این تحقیق به دو بخش بتن‌های معمولی و بتن‌های دارای ماده پوزولانی تقسیم شدند که طرح‌های اختلاط بتن‌ها در محیط کلریدی در 11 گروه اصلی دسته‌ بندی شده‌اند و هر گروه شامل 8 طرح با جایگزینی پودرهای میکروسیلیس و خاکستربادی با درصدهای متفاوت به جای سیمان شدند و فقط گروه اول بدون هیچ گونه مواد افزودنی جایگزین سیمان، شامل یک طرح به عنوان طرح مبنا شد. با این شرح 81 طرح که هر کدام شامل 4 نمونه برای آزمون‌های مقاومت فشاری در سنین 7، 14، 28 و 42 روزه با جمع‌کل 324 طرح ساخته شده و بررسی شدند. نتایج بررسی نمونه‌های آزمایشگاهی واقع شده در محیط کلریدی، نشان داد که دستیابی به افزایش سرعت روند رشد مقاومت فشاری بتن، افزایش میزان مقاومت الکتریکی بتن و کسب مقاومت فشاری مطلوب بتن با استفاده از بتن با سنگدانه‌های استاندارد تقویت شده با پودرهای میکروسیلیس و خاکستر بادی با انتخاب طرح اختلاط بهینه و با صرف هزینه کمتر میسر بوده و برای انجام پروژه‌ها مقرون به صرفه هست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparative Evaluation of Effect of Fly Ash and Microsilica on the Development, Compressive Strength and Electrical Resistance of Concretes Exposed Chlorinated Waters

نویسندگان [English]

  • Yaghoub Babaei 1
  • Seyed Arash Mousavi Ghasemi 2
  • Yousef Zandi 3
1 Ph.D. Student, Department of Civil Engineering, Islamic Azad University Tabriz Branch, Iran
2 Department of Civil Engineering - Technical and Engineering Faculty - Islamic Azad University Tabriz Branch - Tabriz - Iran
3 Department of Civil Engineering - Technical and Engineering Faculty - Islamic Azad University Tabriz Branch - Tabriz - Iran
چکیده [English]

Chloride ions cause the most common corrosion, so chloride ions can enter the concrete through contaminated aggregates and additive materials or infiltration from external sources, such as seawater. If the concrete is exposed to the aforementioned ions, there will be severe loss of durability and expansion of corrosion. In this case, there will be a tangible effect on the development process of resistance reducing the concrete's strength. Therefore, the extant study was conducted to compare the effect of fly ash and micro silica on the development, compressive strength, and electrical resistance of concretes exposed to chlorinated waters. The plans of this study included two types of ordinary concretes and concretes containing pozzolanic material. Concrete mixing plans in chloride medium were divided into 11 groups, which included 8 plans with substitution of micro silica and fly ash powders with different percentages in exchange for cement. The first group included no additive material as a cement substitute and included one plan as the base plan. Accordingly, 81 plans that each consisted of 4 samples were constructed and examined to test compressive strength in 7, 14, 28, and 42-days ages (N=324 plans). According to the results of laboratory samples in chloride medium, there was an increase in the development process of compressive strength, and electrical resistance of concrete while using concrete with standard aggregates reinforced with micro silica and fly ash by selecting the optimal mixing plan and lower cost. The above mentioned case was cost-effective for project implementation.

کلیدواژه‌ها [English]

  • Concrete Compressive Strength
  • Chloride Medium
  • Fly Ash
  • Micro-silica
  • Concrete Electrical
  1. [1] Zandi Y. (2016). Excellent concrete technology design based on durability parameters. Tabriz. University research Publication.

     [2] Ahmadi Mogaddam H., Jahanyar Agdam M., Ahmadi Mogaddam A. (2006). Cement mixed with fly ash effectiv for concrete durability. 13th Conference of Civil Engineering Students Nationwide.

     [3] Ayyoubi M. (2016). Application of micro silica slurry in concrete industry. 8th Iranian Concrete Conference

    [4] Mousavi H. (2001). Factors affecting compressive strength and durability of concrete. Cement Technology Scientific Monthly.

    [5] Shariati, M., Rafie, S., Mehrabi, P., Zandi, Y., Fooladvand, R., Gharehaghaj, B., Shariat, A., Trung, N. T., Salih, M. N. A., and Poi-Ngian, S. (2019). Experimental investigation on the effect of cementitious materials on fresh and mechanical properties of self-consolidating concrete. Advances in Concrete Construction, Volume 8. no. 3, Pages 225–237.

    [6] Zanadi, Y., and Akpinar, M. V. (2012). An experimental study on separately ground and together grinding Portland slag cement strength properties. Res. J. Recent Sci. Volume 1, no. 4, Pages 27‒40.

    [7] Zanadi, Y., and Akpinar, M. V. (2012). Evaluation of internal resistance in asphalt concretes. Int. J. Concrete Struct. Mater. Volume 6, Pages. 247‒250.

    [8] Shariati, M., Heiati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., Safa, M., Salih, M. N. A., and Poi-Ngian, S. Application of waste tire rubber aggregate in porous concrete. (2019). Smart Structures and Systems. Volume. 24, no. 4, Pages. 553‒5669.

    [9] Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., Mu'azu, M. A., Ghanbari, E., Mahdizadeh, M. B., Shariati, M., and Khorami, M. (2018). Portland cement structure and its major oxides and fineness. Smart Struct. Syst. Volume. 22, no. 4, Pages. 425‒432.

    [10] Zandi, Y., Burnaz, O., and Durmus, A. (2012). Determining the temperature distributions of fire exposed reinforced concrete cross sections with different methods. Res. J. Env. Earth Sci. Volume. 4, no. 8, Pages. 782‒788.

    [11] Zandi, Y., and Abedi, M. (2002). Comparative evaluation of the effect of water / cement ratio (W / C), type and percentage of fly ash on concrete strength against chloride ion penetration and its porosity. Amirkabir Journal of Civil Engineering. CEEJ-1907-6336 (R1).

    [12] Chia, K. S., Zhang, M. H. (2002). Water permeability and chloride penetrability of high-strength lightweight aggregate concrete. Cement and Concrete Research. Volume 32, Pages 639-645.

    [13] Lo, T. Y., and Cui, H. Z. (2004). Effect of porous lightweight aggregate on strength of concrete. Materials and Letters. Volume 58, Pages 916-919

     [14] MetinHusem. (2006). The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Safety Journal . Volume 41, Issue 2, Pages 155-163.

    [15] Zandi, Y., and Alayi, M. (2019).Effect of comparison of Ardabil pozzuoli cement and type 2 Sufyan cement compressive strength viewpoints and improvement solutions. Journal of Structural and Construction Engineering. Volume 6, no. 4, Pages 95‒110.

    [16] Zandi, Y. (2013). Effect of mix design on restrained shrinkage of concrete. Bulletin of Environment and Life Sciences. Volume. 2, no. 8, Pages 13‒20.

    [17] Bing, Ch. M., and Congqi, F. (2011). Mechanical properties of EPS lightweight concrete. Construction Materials. Volume 164 Issue 4, Pages 173-180.

     [18] Mortazavi, M., and Majlessi, M. (2013). Evaluation of Silica Fume Effect on Compressive Strength of Structural Lightweight Concrete Containing LECA as Lightweight Aggregate. Advanced Materials Research. Pages 344 - 349

    [19] Guneyisi, E., and Gesoslu, M. (2012). Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials. Volume 34.

    [20] Vahidi, A., MirAhmadi, M., Hassanzadeh, M., and Zabetiyan. F. (2011). Investigation of Effective Factors on Concrete impermeability

    Studies, Case Study of the First Iranian Concrete boat. International Conference on Impermeability Concrete of Drinking Water Tanks.

    [21] Tadvin, M., Maleki, M., Zehni, S., and Maleki. M. J. (2013). Evaluation of the effect of fly ash on electrical conductivity, electrical resistance and chloride ion penetration index of concrete (RCPT). Road, Housing and Housing Research Center, Ninth National Concrete Conference of Iran.

    [22] Powers, T. C. (1958). Structure and physical properties of hardened Portland cement paste. Ceramic Soc, Volume 41.

    [23] Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction a review. Cement & Concrete Composites, No. 25, Pages 459–471.

    [24] Ericikdi, B., Cihangir, F., Kesimal, A., Deveci, H., and Alp, I., (2009). Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings, J. Hazard. Mater. 168 (2-3) 848–856.

     

    [25] Moffatt, Th., and Fahim, A. (2017). Performance of high-volume fly ash concrete in marine environment. Cement and Concrete Research. Volume 102, Pages 127–135.

    [26] Zafar, I., and Sugiyama, T. (2018). The influence of bending crack on rebar corrosion in fly ash concrete subjected to different exposure conditions under static loading. Construction and Building Materials.Volume 160, Pages 293–307.

    [27] Saffari Joursheri, M., and Firouzi, M. (2011). Investigation of the properties of fly ash and its effect on producing resistant concrete against chloride ion entrance. The first international conference Impermeability Concrete of Drinking Water Tanks.

    [28] Fais, B., Sabio, N., and Strachan, N. (2016). The critical role of the industrial sector in reaching long-term emission reduction. Energy efficiency and renewable targets. Appl. Energy. Volume162, Pages 699–712.

     [29] Rajamma, R., Ball, R. J., Tarelho, L. A. C., Allen, G. C., Labrincha, J. A., and Ferreira, V. M. (2009). Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. Volume 172, Pages 1049–1060.

    [30] Embong, R., Kusbiantoro, A., Shafig, N., and Nuruddin, M. F. (2016). Strength and microstructural properties of fly ash based geopolymer concrete containing high-calcium and waterabsorptive aggregate. J. Clean. Prod. Volume 112, Pages 816–822.

    [31] Siddique, R., Jameel, A., Singh, M., Barnat-Hunek Kunal, D., Ait-Mokhtar, A., Belarbi, R., and Rajor, A. (2017). Effect of bacteria on strength, permeation characteristics and micro-structure of silica fume concrete. Constr. Build. Mater. Volume 142, Pages 92–100.

    [32] Darmawan, Sigit, B., Ridho, A. H., Nur, Ch., Saud, I. (2015). A Case Study of Low Compressive Strength of Concrete Containing Fly Ash in East Java Indonesia. Procedia Engineering. Pages 579 - 586.

    [33] Ma, H. (2014). Mercury intrusion porosimetry in concrete technology: tips in measurement, pore structure
    parameter acquisition and application. Journal of porous materials. Volume 21(2), Pages. 207-215.

    [34] de Sensale, G. R. (2006). Strength development of concrete with rice-husk ash. Cement and concrete composites. Volume 28(2), Pages 158-160.

    [35] Zhang, M. (2007). Permeability of high-performance concrete pavement resistance to chloride ion. Low Temp. Archit. Technol. Volume 1, Pages 14-16.

    [36] Zhang, Y., Hongfa, Y., and Jiachun, W. (2009). Injury law a concrete structure of the surface salt freezing conditions. Chinese J. Highway.

    [37] Daniela Eugenia Angulo-Ramírez, William Gustavo Valencia-Saavedra, Ruby Mejía de Gutiérrez. (2020). Alkali-activated concretes based on fly ash and blast furnace slag: Compressive strength, water absorption and chloride permeability. Ingeniería e investigación, Vol.40 (2), Pages 72-80.

    [38] Prusty, Jnyanendra, Kumar, Pradhan, Bulu. (2020). Effect of GGBS and chloride on compressive strength and corrosion performance of steel in fly ash-GGBS based geopolymer concrete. Materials today: proceedings, Vol.32, Pages 850-855..

    [39] Zhou, Qingsong, Lu, Caifeng, Wang, Wei, Wei, Shenghuai, Lu, Chunhao, Hao, Ming. (2020). Effect of fly ash and sustained uniaxial compressive loading on chloride diffusion in concrete. Journal of Building Engineering, Vol.31.

    [40] Hassan, Amer, Arif, Mohammed, Shariq, M. (2020). Age‐dependent compressive strength and elastic modulus of fly ash‐based geopolymer concrete. Structural concrete: journal of the FIB.

    [41] Dong, Pham Sy, Van Tuan, Nguyen, Thanh, Le Trung, Thang, Nguyen Cong, Cu, Viet Hung, Mun, Ju-Hyun. (2020). Compressive Strength Development of High-Volume Fly Ash Ultra-High- Performance Concrete under Heat Curing Condition with Time. Applied sciences, Vol.10.

     [42] ASTM C150-05. (2005). Standard specification for Portland cement. ASTM International, West Conshohocken, PA.

    [43] ASTM C494/C494M-19, Standard specification for chemical admixtures for concrete, ASTM International, West Conshohocken, PA, 2019.

    [44] ASTM C33/C33M-18. (2018). Standard specification for concrete aggregates. ASTM International, West Conshohocken, PA.

    [45] ACI 211.1-91. (2002). Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, USA, reapproved.

    [46] ASTM C 143. (2008). Standard test method for length change of hardened hydraulic-cement mortar and concrete. ASTM International, West Conshohocken, PA.

     [47] Cox, C., and Vennesland, V. (Eds.). (1997). Corrosion and Protection of Metals in Contact with Concrete, Final report. European Commission, Directorate General Science, Research and Development, Brussels, EUR 17608 EN.

    [48] ACI 222. (2002). Protection of metals in concrete against corrosion. American Concrete Institute, USA, reapproved.

    1. Year].