پیش بینی سرعت موج برشی و نوع خاک منطقه دارای شتابنگاشت ثبت شده در فلات ایران با استفاده از نسبت های طیفی مؤلفه ی قائم و افقی زمین لرزه

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

زلزله از پدیده‌های مخرب و غیرقابل پیش بینی است که خسارات جانی و مالی بسیاری در پی دارد. ارزیابی کلی از خسارات وارده به سازه‌ها و تاسیسات در زلزله‌ها نشان می‌دهد که شرایط ساختگاهی تاثیر قابل توجهی بر نحوه‌ی توزیع خرابی‌ها داشته است. لذا شناسایی اثر ساختگاه و نوع خاک در طراحی و ساخت سازه‌های مقاوم، امری ضروری به شمار می‌آید. با توجه به اینکه نوع خاک در بسیاری از مناطق فلات ایران تعیین نشده است، در این پژوهش، پیش‌بینی رابطه‌ای برای تعیین سرعت موج برشی و تعیین نوع خاک منطقه با استفاده از روش نسبت طیفی مؤلفه‌ی افقی به قائم (H/V) و الگوریتم توسعه‌ی ژنی(GEP) مدنظر قرار گرفته است. عوامل مؤثر در این پیش‌بینی، بزرگای زلزله، فاصله‌ی منبع زلزله‌ تا ساختگاه، نسبت طیفی مؤلفه‌ی افقی به قائم (H/V) و پریود زمانی نسبت طیفی حداکثر در نظرگرفته شده‌اند. در این تحقیق، داده های 480 شتابنگاشت مورد استفاده قرار گرفت. اصلاحات مورد نیاز روی این داده‌ها صورت گرفته و سپس پارامترهای مورد نظر برای تعیین رابطه‌ی سرعت موج برشی از آن استخراج شده است. پس از آماده سازی مقادیر ورودی الگوریتم از کاتالوگ زلزله، در نهایت برای به‌دست آوردن رابطه‌ی پیش‌بینی از روش هوشمند الگوریتم توسعه‌ی ژنی استفاده شده است. مزیت این الگوریتم در این است که از مدل رگرسیونی ثابتی استفاده نشده است و مدل به صورت هوشمند محاسبه می-گردد. نتایج نشان می‌دهند که مدل دارای برازندگی 57/911 بوده و مقادیر پیش‌بینی شده مطابقت 73 درصدی با وضعیت موجود خاک مطابق با استاندارد 2800 دارند. از تعداد 480 رکورد مورد استفاده، روش ارائه شده توانست نوع خاک 350 ایستگاه را به درستی پیش بینی نماید. همچنین مقایسه با سایر روشهای طبقه بندی نشان داد که کمترین تطابق هم دارای دقت بیش از 55 درصدی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Prediction of shear wave velocity and soil type of the region with recorded accelerometer in Iran plateau using vertical and horizontal seismic components spectral ratios

نویسندگان [English]

  • iman khazaei 1
  • Mohammad Shamekhi Amiri 2
  • amir bazrafshan moghaddam 2
1 Shahrood University of Technology
2 Assistant Professor, Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Earthquake is a destructive and unpredictable phenomenon that causes a lot of human and financial losses. An overall assessment of the damage to structures and facilities due to earthquakes shows that site conditions have had a significant impact on the distributions of damage. Therefore, identifying the effect of site and soil type in the design and construction of earthquake resistant structures is essential.

Due to the fact that soil type has not been determined in many regions of the Iranian plateau, in this study, A relation is presented to determine the shear wave velocity using Horizontal-to-vertical spectrum ratio method (H/V) and the Gene expression programming (GEP).

In this study, a suite of 480 records is used. Input factors in this research are moment magnitude, site to source distance, Horizontal-to-vertical spectrum ratio and the time of the maximum amount of H/V ratio.

After preparing the input values from the earthquake catalog, finally, GEP method is used to obtain the prediction relationship.

The advantage of this algorithm is that a fixed regression model is not used and the model is calculated intelligently. Finally, the results show that the model has a fitness of 911.57 and the shear wave velocity values provided by the relation correspond to 73% with the actual values.

کلیدواژه‌ها [English]

  • Horizontal-to-vertical spectrum ratio
  • Shear wave velocity
  • GEP
  • Soil type
  • Iranian plateau
[1] Lermo, J., & Chávez-García, F. J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America83(5), 1574-1594.
[2] Borcherdt, R. D., & Gibbs, J. F. (1976). Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake. Bulletin of the Seismological Society of America66(2), 467-500.
[3] Borcherdt, R. D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America60(1), 29-61.
[4] Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports30(1).
[5] Zare, M., Bard, P. Y., & Ghafory-Ashtiany, M. (1999). Site characterizations for the Iranian strong motion network. Soil Dynamics and Earthquake Engineering18(2), 101-123.
[6] Zare, M. (1994). The study of site effects on the strong ground motions during earthquakes, a case-study on the Manjil 1990 earthquake (Doctoral dissertation, MSc. Thesis, Engineering Geology Dept. Tarbiat-Modarres University, Tehran, 1994. 214p (in Persian)).
[7] Zare, M. (1996). Site dependent attenuation of strong motions for Iran. In Proceedings of the fifth international conference on seismic zonation (Nice, October 17-19, 1995) (pp. 1227-1236).
[8] Zare, M. (1996). Deux exemples de mouvements de forts seÂismes en champ proche en Iran. In: 4em Colloque National en GeÂnie Parasismique, AFPS, Paris, Proc. vol.1, pp. 112-119.
[9] Zaré, M. (1996). The soft soil site responses to the Manjil, Iran (1990) earthquake. In Proceedings of the Eleventh World Conference on Earthquake Engineering (WCEE), Acoppolco, paper (No. 1475).
[10] Jafari, MK., Kamalian, M., Chamanzad, M. (1995). Microzonation of the Tehran Region. In: Proceedings of the Second International Conference on Seismology and Earthquake Engineering (SEE-2), Tehran, vol. 2, pp. 1301-1311.
[11] Jafari, MK., Kamalian, M., Chamanzad, M. (1996). Microzonation study in the Tehran region. In: Proceedings of the Eleventh World Conference on Earthquake Engineering (WCEE), Accopolco, paper no.895.
[12] Zhao, J. X., Irikura, K., Zhang, J., Fukushima, Y., Somerville, P. G., Asano, A., ... & Ogawa, H. (2006). An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bulletin of the Seismological Society of America96(3), 914-925.
[13] Ghasemi, H., Zare, M., Fukushima, Y., & Sinaeian, F. (2009). Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dynamics and Earthquake Engineering29(1), 121-132.
[14] Anbazhagan, P., Srilakshmi, K. N., Bajaj, K., Moustafa, S. S., & Al-Arifi, N. S. (2019). Determination of seismic site classification of seismic recording stations in the Himalayan region using HVSR method. Soil Dynamics and Earthquake Engineering116, 304-316.
[15] Lachetl, C., & Bard, P. Y. (1994). Numerical and theoretical investigations on the possibilities and limitations of Nakamura's technique. Journal of Physics of the Earth42(5), 377-397.
[16] Field, E. H., & Jacob, K. H. (1995). A comparison and test of various site-response estimation techniques, including three that are not reference-site dependent. Bulletin of the seismological society of America85(4), 1127-1143.
[17] Bard, P. Y. (1999). Microtremor measurements: a tool for site effect estimation. The effects of surface geology on seismic motion3, 1251-1279.
[18] Bindi, D., Parolai, S., Spallarossa, D., & Catteneo, M. (2000). Site effects by H/V ratio: comparison of two different procedures. Journal of Earthquake Engineering4(01), 97-113.
[19] Theodulidis, N. P., & Bard, P. Y. (1995). Horizontal to vertical spectral ratio and geological conditions: an analysis of strong motion data from Greece and Taiwan (SMART-1). Soil dynamics and earthquake engineering14(3), 177-197.
[20] Nogoshi, M. (1971). On the amplitude characteristics of microtremor, Part II. Journal of the seismological society of Japan24, 26-40.
[21] Arai, H., & Tokimatsu, K. (2004). S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America94(1), 53-63.
[22] Picozzi, M., & Albarello, D. (2007). Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophysical Journal International169(1), 189-200.
[23] Herak, M. (2008). ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences34(11), 1514-1526.
[24] Ghofrani, H., & Atkinson, G. M. (2014). Site condition evaluation using horizontal-to-vertical response spectral ratios of earthquakes in the NGA-West 2 and Japanese databases. Soil Dynamics and Earthquake Engineering67, 30-43.
[25] Sylvette, B. C., Cécile, C., Pierre-Yves, B., Fabrice, C., Peter, M., Jozef, K., & Fäh, D. (2006). H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophysical Journal International167(2), 827-837.
[26] Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. (2006). The nature of noise wavefield and its applications for site effects studies: A literature review. Earth-Science Reviews79(3-4), 205-227.
[27] Yaghmaei-Sabegh, S., & Tsang, H. H. (2011). A new site classification approach based on neural networks. Soil Dynamics and Earthquake Engineering31(7), 974-981.
[28] Yaghmaei-Sabegh, S., & Tsang, H. H. (2014). Site class mapping based on earthquake ground motion data recorded by regional seismographic network. Natural hazards73(3), 2067-2087.
[29] Di Alessandro, C., Bonilla, L. F., Boore, D. M., Rovelli, A., & Scotti, O. (2012). Predominant‐period site classification for response spectra prediction equations in Italy. Bulletin of the Seismological Society of America102(2), 680-695.
[30] Nakamura, Y. (2000, January). Clear identification of fundamental idea of Nakamura’s technique and its applications. In Proceedings of the 12th world conference on earthquake engineering (Vol. 24, pp. 25-30). New Zealand: Auckland.
[31] Lunedei, E., & Albarello, D. (2010). Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International181(2), 1093-1108.
[32] Kobayashi, H. (1973). Preliminary report on the ambient noise measurements in Thessaloniki. UNDP/SF. REM, 70-172.
[33] Scherbaum, F., Riepl, J., Bettig, B., Ohnberger, M., Cornou, C., Cotton, F., & Bard, P. Y. (1999). Dense array measurements of ambient vibrations in the Grenoble basin to study local site effects. EOS, Transactions, AGU80(46), F707.
[34] Diagourtas, D., Tzanis, A., & Makropoulos, K. (2002). Comparative study of microtremor analysis methods. In Earthquake Microzoning (pp. 2463-2479). Birkhäuser, Basel.
[35] Bonilla, L. F., Steidl, J. H., Lindley, G. T., Tumarkin, A. G., & Archuleta, R. J. (1997). Site amplification in the San Fernando Valley, California: variability of site-effect estimation using the S-wave, coda, and H/V methods. Bulletin of the Seismological Society of America87(3), 710-730.
[36] Iranian Code 626. (2013), " Guideline for Seismic Hazard Analysis", Vice- President Strategic Planning and Oversight.
[37] R. Emami, R. Rezaei, M. Rezapour, (2014). Determination of Empirical Distance Attenuation and the Local-Magnitude Scale for Northwest Iran with JHD Technique, Geosciences Scientific Quarterly Journal, 23(92), 85. 
[38] Abrahamson, N. A., & Silva, W. J. (1997). Empirical response spectral attenuation relations for shallow crustal earthquakes. Seismological research letters68(1), 94-127.
[39] Ferreira, C. (2002). Gene expression programming in problem solving. In Soft computing and industry (pp. 635-653). Springer, London.
[40] Ferreira, C. (2006). Gene expression programming: mathematical modeling by an artificial intelligence (Vol. 21). Springer.
[41] Mansouri, I., Güneyisi, E. M., & Mosalam, K. M. (2021). Improved shear strength model for exterior reinforced concrete beam-column joints using gene expression programming. Engineering Structures, 228, 111563.
[42] Samui, P. (2021). Application of Soft Computing in Geotechnical Earthquake Engineering. In Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics (pp. 443-453). Springer, Singapore.
[43] Gharehbaghi, S., Gandomi, M., Plevris, V., & Gandomi, A. H. (2021). Prediction of seismic damage spectra using computational intelligence methods. Computers & Structures, 253, 106584.
[44] Ghodrati Amiri, G., & Zahedi, M., & Gholami, S., & Mahdavian, A. (2004). Appropriate frequency band for correcting iranian accelerograms in different site conditions. Journal of Faculty of Engineering (University of Tehran), 38(2 (84)), 231-249.
[45] Iranian Code of Practice for Seismic Resistance Design of Buildings: Standard No. 2800. 4th Edition, Building and Housing Research Center (In Persian).
[46] Ghayamghamian, M. R., & Nojavan, A. R. (2008). A new site classification system based on strong motion analysis in Iran. In Geotechnical Earthquake Engineering and Soil Dynamics IV (pp. 1-12).
[47] UBC (1997) Uniform Building Code, International Conference of Building Officials. Whittier, California, USA
[48] Komak Panah, A., Hafezi Moghaddas, N., Ghayamghamian, M. R., Motosaka, M., Jafari, M. K., & Uromieh, A. (2002). Site effect classification in East-Central of Iran. Journal of Seismology and Earthquake Engineering4(1), 37-46.
[49] Sinaian F., (2006), PhD Thesis: "Research on Strong Earth Motion in Iran (from Catalog to Reduction Relations)", International Institute of Seismology and Earthquake Engineering.