بررسی اثر ضریب بزرگنمایی تغییرمکان در قابهای خمشی فولادی ویژه با استفاده از تحلیل دینامیکی افزایشی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترای مهندسی سازه، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

2 استادیار ، دانشگاه، بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

تغییرمکان‌های جانبی سازه با اعمال ضریب بزرگنمایی تغییرمکان ( ) در تغییرمکا‌‌‌‌ن‌های حالت خطی در آئین‌نامه‌های طراحی متداول ارائه شده است. در بسیاری از آئین‌نامه‌ها این ضرایب مطابق با رفتار واقعی سازه نیستند بلکه تجربی و بر اساس مشاهدات زلزله‌های گذشته است. در این مقاله به بررسی تأثیر ضریب بزرگنمایی تغییرمکان در عملکرد لرزه‌ای قاب‌های خمشی فولادی ویژه با تعداد طبقات مختلف پرداخته شده است. بدین منظور، شش گروه ساختمان با مقادیر برابر با 4، 5، 5/5، 6، 7 و 8 با ارتفاع‌های مختلف (5، 10، 15، 20 و 25 طبقه) طراحی و توسط نرم افزار اپنسیس مدلسازی گردید.سپس تحلیل استاتیکی غیرخطی و تحلیل دینامیکی افزایشی روی سازه‌ها انجام شد .عملکرد لرزه‌ایی ساختمان‌ها با استفاده از منحنی‌های شکنندگی و روشFEMA P695 بررسی گردید. نتایج نشان داد که در نظر گرفتن برابر با 5/5 در طراحی قاب خمشی فولادی ویژه برای ساختمان‌های کوتاه‌ و میان مرتبه، معیارهای فروریزش FEMA P695 را برآورده نمی‌سازد. در ساختمان‌های طراحی شده با مقادیر برابر با 4، 5 و 5/5 میانگین احتمال فروریزش ساختمان‌ها به ترتیب 4/28%، 2/17% و7/11% به دست آمد که از مقدار مجاز10% بیشتر است، بنابراین قابل قبول نیستند؛ همچنین، مقدار این میانگین در ضرایب برابر با 6، 7 و 8 به ترتیب 3/9%، 2/6% و 1/4% به دست آمدند که کمتر از 10% هستند و نشان دهنده عملکرد قابل قبول این ساختمان‌ها است. بعلاوه، در ساختمان‌های بلندمرتبه لزوماً افزایش مقدار بهبودی در رفتار لرزه ایی سازه ایجاد نکرد بنابراین با توجه به اینکه موجب افزایش ابعاد مقاطع و غیراقتصادی شدن طرح گردید، پیشنهاد نمی‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Displacement Amplification Factor of Steel Special Moment Frames Using Incremental Dynamic Analysis

نویسندگان [English]

  • Seyedeh Maryam Hosseinifard 1
  • Farzaneh Hamedi 2
1 Ph.D Candidate of Structural Engineering, Imam Khomeini International University, Qazvin, Iran
2 Assistant Professor, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

In recent decades several destructive earthquakes resulted in extensive structural and non-structural damage in structures, that which was produced by lateral displacements. So, it reveals the necessity for theof accurate estimation of the lateral displacement of the structures in the design procedure. According to the present seismic design provisions, displacement amplification factor, (Cd), is being applied to acquire elastic lateral displacements in order to assess inelastic displacements, due to the ground motions. Besides, in many codes, these factors are empirical in nature and is based on structural performance, which has been observed in the past earthquakes; AlsoOn the other hand, the effect of height and number of stories are is neglected. In this paper, the effect of Cd on seismic performance of steel special moment frames is evaluated. Six types of buildings are designed with different values of Cd (i.e., 4, 5, 5.5, 6, 7, and 8). For each type of building,s 5 heights (i.e., 5-, 10-, 15-, 20- and 25-stories) are considered. The numerical finite element models are developed in Opensees. Incremental dynamic and nonlinear static analyses are performed to quantify structures’ seismic performance utilizing fragility curves and FEMA P695 methodology. The results indicate that the values of Cd provided in the codes for steel special moment frames does not induceare not completely effective on seismic performance, especially in short-rise buildings. Also, the probability of collapse of high-rise buildings are is less likely with respect to the medium-rise buildings; Therefore, in high-rise buildings, increasing the amount of Cd is not necessarily recommended, as because it increases the cross sections in of the frame members and makes the design uneconomical.

کلیدواژه‌ها [English]

  • Displacement amplification factor
  • Steel special moment frame
  • Incremental dynamic analysis
  • FEMA P695 methodology
  • Fragility curve
[1]        Y. Lin, E. Miranda, and M. Asce, “Estimation of Maximum Roof Displacement Demands in Regular Multistory Buildings,” no. January, pp. 1–11, 2010.
[2]        S. Akkar and E. Miranda, “IMPROVED DISPLACEMENT MODIFICATION FACTOR TO ESTIMATE MAXIMUM DEFORMATIONS OF SHORT PERIOD STRUCTURES,” 13 th World Conf. Earthq. Eng., no. 3424, 2004.
[3]        M. Mahmmoudi, “The ratio of displacement amplification factor to force reduction factor,” no. 1917, 2004.
[4]        A. Formisano, R. Landolfo, and F. M. Mazzolani, “Robustness assessment approaches for steel framed structures under catastrophic events,” Comput. Struct., vol. 147, pp. 216–228, 2015, doi: 10.1016/j.compstruc.2014.09.010.
[5]        F. Beatrice, A. Formisano, V. Generoso, and F. M. Mazzolani, “Numerical study on Moment Resisting Frames under monotonic and cyclic loads,” Key Eng. Mater., vol. 763, no. February, pp. 625–632, 2018, doi: 10.4028/www.scientific.net/KEM.763.625.
[6]        A. Louzai and A. Abed, “Evaluation of the seismic behavior factor of reinforced concrete frame structures based on comparative analysis between non-linear static pushover and incremental dynamic analyses,” Bull. Earthq. Eng., vol. 13, no. 6, pp. 1773–1793, 2015, doi: 10.1007/s10518-014-9689-7.
[7]        E. Miranda, “Inelastic Displacement Ratios for Structures on Firm Sites,” no. October, pp. 1150–1159, 2000.
[8]        J. Ruiz-García and E. Miranda, “Inelastic displacement ratios for evaluation of structures built on soft soil sites,” Earthq. Eng. Struct. Dyn., vol. 35, no. 6, pp. 679–694, 2006, doi: 10.1002/eqe.552.
[9]        E. Miranda and J. Ruiz-Garca, “Evaluation of approximate methods to estimate maximum inelastic displacement demands,” Earthq. Eng. Struct. Dyn., vol. 31, no. 3, pp. 539–560, 2002, doi: 10.1002/eqe.143.
[10]      A. K. Chopra and C. Chintanapakdee, “Inelastic deformation ratios for design and evaluation of structures: Single-degree-of-freedom bilinear systems,” J. Struct. Eng., vol. 130, no. 9, pp. 1309–1319, 2004, doi: 10.1061/(ASCE)0733-9445(2004)130:9(1309).
[11]      B. Chikh et al., “Seismic structural demands and inelastic deformation ratios: Sensitivity analysis and simplified models,” Earthq. Struct., vol. 13, no. 1, pp. 59–66, 2017, doi: 10.12989/eas.2017.13.1.059.
[12]      A. Mechaala, C. Benazouz, H. Zedira, Y. Mehani, and S. Guezouli, “Higher modes contribution for estimating the inelastic deformation ratios and seismic demands of structures,” J. Mech. Sci. Technol., vol. 33, no. 2, pp. 591–601, 2019, doi: 10.1007/s12206-019-0113-8.
[13]      C. Uang, “ Establishing R (or Rw) and Cd Factors for Building Seismic Provisions ,” J. Struct. Eng., vol. 117, no. 1, pp. 19–28, 1991, doi: 10.1061/(asce)0733-9445(1991)117:1(19).
[14]      C. M. Uang and A. Maarouf, “Deflection amplification factor for seismic design provisions,” J. Struct. Eng., vol. 120, no. 8, pp. 2423–2436, 1995, doi: https://doi.org/10.1061/ (ASCE)0733-9445(1994)120:8(2423).
[15]      M. Samimifar, A. V. Oskouei, and F. R. Rofooei, “Deflection amplification factor for estimating seismic lateral deformations of RC frames,” Earthq. Eng. Eng. Vib., vol. 14, no. 2, pp. 373–384, 2015, doi: 10.1007/s11803-015-0029-y.
[16]      A. Kuşyılmaz and C. Topkaya, “Displacement ampli fi cation factors for steel eccentrically braced frames,” 2014, doi: 10.1002/eqe.
[17]      A. Kuşyılmaz and C. Topkaya, “Evaluation of Seismic Response Factors for EBFs using FEMA P695 Methodology,” Earthq. Spectra.
[18]      Y. O. Özkılıç, M. B. Bozkurt, and C. Topkaya, “Evaluation of seismic response factors for BRBFs using FEMA P695 methodology,” J. Constr. Steel Res., vol. 151, pp. 41–57, 2018, doi: 10.1016/j.jcsr.2018.09.015.
[19]      M. Zaker Esteghamati, M. Banazadeh, and Q. Huang, “The effect of design drift limit on the seismic performance of RC dual high-rise buildings,” Struct. Des. Tall Spec. Build., vol. 27, no. 8, pp. 1–16, 2018, doi: 10.1002/tal.1464.
[20]      (ASCE 7-10), “MinimumDesign Loads for Buildings and Other Structures,” Am. Soc. Civ. Eng. Reston, VA, 2016.
[21]      I. code of practice for seismic resistant of buildings-4th Edition, Standard No.2800. 1393.
[22]      M. Samimifar, A. V. Oskouei, and F. R. Rofooei, “De fl ection ampli fi cation factor for estimating seismic lateral deformations of RC frames Abstract :,” vol. 14, no. 2, pp. 373–384, 2015.
[23]      AISC 341-10, “Seismic Provisions for Structural Steel Buildings,” Seism. Provisions Struct. Steel Build., no. 1, p. 402, 2010.
[24]      F. Zareian, D. G. Lignos, and H. Krawinkler, “Evaluation of seismic collapse performance of steel special moment resisting frames using FEMA P695 (ATC-63) methodology,” Struct. Congr. 2010, vol. 695, pp. 1275–1286, 2010, doi: 10.1061/41130(369)116.
[25]      L. F. Ibarra and H. Krawinkler, “Global Collapse of Frame Structures under Seismic Excitations,” Berkeley, Calif., no. 152, pp. 1–301, 2005.
[26]      D. G. Lignos and H. Krawinkler, “Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading,” J. Struct. Eng., vol. 137, no. 11, pp. 1291–1302, 2011, doi: 10.1061/(ASCE)ST.1943-541X.0000376.
[27]      D. Lignos, “Sidesway Collapse of Deteriorating Structural Systems,” Stanford University, 2008.
[28]      FEMA P695, “Quantification of building seismic performance factors,” Fema P695, no. June, p. 421, 2009.
[29]      FEMA-355C, “State of the art report on systems performance of steel moment frames subjected to earthquake ground shaking,” FEMA-355C, no. Washington, DC, 2000.
[30]      F. L. A. Ribeiro, A. R. Barbosa, and L. C. Neves, “Application of reliability-based robustness assessment of steel moment resisting frame structures under post-mainshock cascading events,” J. Struct. Eng. (United States), vol. 140, no. 8, pp. 1–12, 2014, doi: 10.1061/(ASCE)ST.1943-541X.0000939.
[31]      A. Asghari and S. Saharkhizan, “Seismic design and performance evaluation of steel frames with knee-element connections,” J. Constr. Steel Res., vol. 154, pp. 161–176, 2019, doi: 10.1016/j.jcsr.2018.11.011.
[32]      D. Vamvatsikos and C. Allin Cornell, “Incremental dynamic analysis,” Earthq. Eng. Struct. Dyn., vol. 31, no. 3, pp. 491–514, 2002, doi: 10.1002/eqe.141.
[33]      D. Vamvatsikos and C. Allin Cornell, “Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis,” Berkeley, Calif., no. 151, pp. 1–172, 2005.
[34]      J. W. Baker, “Efficient analytical fragility function fitting using dynamic structural analysis,” Earthq. Spectra, vol. 31, no. 1, pp. 579–599, 2015, doi: 10.1193/021113EQS025M.