مقاومت خرابی پیشرونده قاب‌های خمشی فولادی با انواع اتصالات جوشی تیر به ستون در سناریوهای مختلف حذف ستون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، واحد ارومیه، دانشگاه آزاد اسلامی ، ارومیه، ایران

2 1-گروه عمران، واحد ارومیه، دانشگاه آزاد اسلامی ، ارومیه، ایران. 2- استاد دانشکده فنی و مهندسی، دانشگاه ارومیه، ارومیه، ایران.

3 1- گروه عمران، واحد ارومیه، دانشگاه آزاد اسلامی ، ارومیه، ایران

چکیده

به هنگام بروز پدیده‌ی خرابی پیشرونده ناشی از حذف ستون، اتصالات تیر به ستون سازه باید دارای مقاومت و شکل‌پذیری کافی باشند؛ تا بتوانند بارهای اضافی وارده را تحمل نمایند. غالبا شروع گسترش خرابی در سازه‌هایی که در معرض بارهای غیرعادی قرار داشته‌‌اند از محل اتصال تیر به ستون بوده است. در پژوهش حاضر با استفاده از روش آنالیز شبه استاتیکی غیرخطی، قاب خمشی فولادی با انواع مختلف اتصالات جوشی تیر به ستون شامل اتصال مستقیم تقویت‌نشده جوشی (WUF-W)، اتصال تیر با مقطع کاهش‌یافته (RBS)، اتصال جوشی به کمک ورق‌های روسری و زیرسری (WFP) و اتصال مستقیم جوشی (I-W)، تحت اثر سه سناریوی مختلف حذف ستون گوشه، داخلی،کناری و همچنین سناریوی حذف ستون با دو تیر هم‌راستا مورد ارزیابی قرار گرفته است. نمودار نیرو-تغییرمکان و حالت‌های خرابی برای اتصالات نمونه در نقاط مختلف پلان استخراج شده است. علاوه بر ارزیابی مقاومت هر اتصال در چهار حالت سناریوی حذف ستون، مقایسه‌ بین ظرفیت باربری هر اتصال با اتصالات دیگر به ازای سناریوهای مختلف حذف ستون صورت گرفته است. نتایج تحلیل نشان داده است که اتصالWFP (با حداکثر نیروی عمودی 473/71 کیلو نیوتن و ضریب بار 2/49)، در تمامی موقعیت‌های اتصالی تیر به ستون مقاومت بهتری در برابر خرابی پیشرونده دارد؛ و ظرفیت باربری این اتصال بالاست. بعد از اتصالWFP ، به ترتیب اتصالاتW-I ، RBS ،WUF-W (با حداکثر نیروی عمودی به ترتیب 369/40، 318/025 و 305/4 کیلو نیوتن و حداکثر ضریب بار به ترتیب 2/28، 1/90، 1/82) در حالت حذف ستون داخلی و با چهار تیر متعامد از مقاومت بالاتری برخوردار بودند. بررسی نتایج حاصل از نمودارهای نیرو-تغییرمکان نشان می‌دهد که اتصالات WUF-W وW-I در سناریوی حذف ستون کناری و اتصالات RBS و WFPدر سناریوی حذف ستون میانی، مقاومت بیشتری در خرابی پیشرونده و ظرفیت باربری بالایی دارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Progressive collapse resistance of steel moment frames with different types of beam-to-column welded connections in various column removal scenarios

نویسندگان [English]

  • Samad barmaki 1
  • Mohammad Reza Sheidaii 2
  • Omid Azizpour Miandoab 3
1 Department of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
2 1- Department of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran 2- Department of Civil Engineering. Urmia University, Urmia, Iran
3 1- Department of Civil Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
چکیده [English]

When the progressive collapse phenomenon occurs due to the column removal, the beam-to-column connections must have enough resistance and ductility to be able to withstand the additional imposed loads. Often the onset of failure in the structures exposed to abnormal loads arises from the beam-to-column connections. In the present study, using nonlinear quasi-static analysis method, the steel moment frame with different types of beam-to-column welded connections including welded unreinforced flange-welded web moment (WUF-W), reduced beam section (RBS), welded flange plate (WFP) and welded flange-weld web connection with internal diaphragms (I-W),‌ under three different corner, interior and side column removal scenarios and also the column removal scenario with two beams in line are evaluated. The force-displacement diagram and failure modes for sample connections at different positions of the plan are extracted. In addition to assessing the resistance of each connection in the four column removal scenarios, the comparison between the bearing capacities of each connection with other connections has been carried out for different column removal scenarios. The results revealed that the WFP connection (with maximum vertical force of 473.71 kN and maximum load factor of 2.49) in all connecting positions had better resistance to progressive collapse, and bearing capacity of this connection is high. After WFP connection, in the case of removal of the internal column with four perpendicular beams, the W-I, RBS, and WUF-W connections (with maximum vertical force of 369.40, 318.025 and 305.4 kN, respectively and with maximum load factor of 2.28, 1.90, 1.82, respectively) had a higher resistance, respectively. Examination of the results of load-displacement diagrams showed that WUF-W and W-I connections in the side column removal senario as well as RBS and WFP connections in the middle column removal senario had greater resistance to progressive collapse and high load-bearing capacity.

کلیدواژه‌ها [English]

  • Steel moment frame
  • beam-to-column welded connections
  • column removal scenario
  • progressive collapse
  • nonlinear quasi-static analysis
[1] Li, L. L., Li, G. Q., Jiang, B., and Lu, Y. (2018). Analysis of robustness of steel frames against progressive collapse. Journal of Constructional Steel Research, 143, 264-278.
[2] American Society of Civil Engineers (ASCE). (2013).Seismic Evaluation and retrofit of existing buildings. New York: ASCE41-13.
[3] Kiakojouri, F., De Biagi, V., Chiaia, B., and Sheidaii, M. R. (2020). Progressive collapse of framed building structures: Current knowledge and future prospects. Engineering Structures, 206, 110061.
[4] Starossek, U. (2009). Progressive collapse of structures (Vol. 153). London: Thomas Telford.
[5] American Institute of Steel Construction Inc (AISC). (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications (ANSI/AISC 358-16). Chicago, IL.
[6] Kiakojouri, F., Sheidaii, M. R., De Biagi, V., and Chiaia, B. (2020). Progressive Collapse Assessment of Steel Moment-Resisting Frames Using Static-and Dynamic-Incremental Analyses. Journal of Performance of Constructed Facilities, 34(3), 04020025.
[7] Shyam-Sunder, S., Gann, R. G., Grosshandler, W. L., Lew, H. S., Bukowski, R. W., Sadek, F., ... and Lawson, J. R. (2005). Federal building and fire safety investigation of the world trade center disaster: final report of the national construction safety team on the collapses of the world trade center towers (NIST NCSTAR 1).
[8] Arshadi, H., Kheyroddin, A., and Naderpour, H. (2019). High-strength reinforcement effects on the seismic behaviour of beam–column joints. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 1-12.
[9] Starossek, U., and Haberland, M. (2011). Approaches to measures of structural robustness. Structure and Infrastructure Engineering, 7.7-8, 625-631.
[10] Sorensen, J. D. (2011). Framework for robustness assessment of timber structures. Engineering Structures, 33(11), 3087-3092.
[11] Prestandard, F. E. M. A. (2000). Commentary for the seismic rehabilitation of buildings (FEMA356). Washington, DC: Federal Emergency Management Agency, 7.
[12] UFC. (2016). Design of buildings to resist progressive collapse. 4-023-03, Department of Defense (DOD), Washington, D.C., VA: Unified Facility Criteria.
[13] GSA, U. (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington, DC.
[14] Mehdizadeh, K., and Karamodin, A. (2018). Evaluation the possibility of the occurrence of progressive collapse in steel moment frames (ordinary, intermediate and special) due to sudden column removal. Journal of Structural and Construction Engineering. DOI: 10.22065/jsce.2017.89028.1231.
[15] Rohola Rahnavard, Navid Siahpolo, (2021). Function comparison between moment frame and moment frame with centrically braces in high-rise steel structure under the effect of progressive collapse. Journal of Structural Engineering and Construction Engineering .DOI: 10.22065/jsce.2017.77865.1084.
[16] Rezvani, F. H., Yousefi, A. M., and Ronagh, H. R. (2015). Effect of span length on progressive collapse behaviour of steel moment resisting frames. In Structures, vol. 3, pp. 81-89.
[17] Kordbagh, B., and Mohammadi, M. (2018). Influence of panel zone on progressive collapse resistance of steel structures. Journal of Performance of Constructed Facilities, 32(3), 04018014.
[18] Mohammad Saghaie Sahebalzaman, Mohammad Reza Sheidaii, Alireza Salmasi, (2021). Effects of plastic hinges modelling of fully restrained connections in the progressive collapse resistance of steel moment frames. Journal of Structural and Construction Engineering, 8(1), 2021, pp. 327-342.
[19] Wang, W., Fang, C., Qin, X., Chen, Y., and Li, L. (2016). Performance of practical beam-to-SHS column connections against progressive collapse. Engineering Structures, 106, 332-347.
[20] Sadek, F., Main, J. A., Lew, H. S., and El-Tawil, S. (2013). Performance of steel moment connections under a column removal scenario. II: Analysis. Journal of Structural Engineering, 139(1), 108-119.
[21] Zhong, W., Meng, B., and Hao, J. (2017). Performance of different stiffness connections against progressive collapse. Journal of Constructional Steel Research, 135, 162-175.
[22] Barmaki, S., Sheidaii, M. R., and Azizpour, O. (2020). Progressive Collapse Resistance of Bolted Extended End-Plate Moment Connections. International Journal of Steel Structures, 1-15.
[23] Mahmoudi, M., and Varmaghani, S. (2017). Performance Evaluation of Moment Connections of Moment Resisting Frames Against Progressive Collapse. Journal of Structural and Construction Engineering. DOI: 10.22065/jsce.2016.40426.
[24] Kim, T., and Kim, J. (2009). Collapse analysis of steel moment frames with various seismic connections. Journal of Constructional Steel Research, 65(6), 1316-1322.
[25] Park, J., and Kim, J. (2010). Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column. Engineering Structures, 32(6), 1547-1555.
[26] Jalali, A. R., and Yasrebinia, Y. (2012). Investigation of Steel Welded Moment Connections Performance under Column  Collapse. Modares Civil Engineering journal, 12(1).
[27] ABAQUS. (2014).Analysis user’s manual, ABAQUS Standard, 2014, Version 6.14.
[28] ANSI/AISC 341-10. (2010), Seismic provisions for structural steel buildings, American   Institute of Steel Construction, Chicago.
[29] ASCE358-16. (2016). Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications. 130 East Randolph Street, Suite 2000, Chicago, Illinois 60601.
[30] ASCE 7. (2016). Minimum design loads for buildings and other structures (SEI/ASCE 7-16), American Society of Civil Engineers; New York.
[31] ASTM A370-17. (2017). Standard test methods and definitions for mechanical testing of steel products.
[32] DoD (Department of Defense). (2009). Design of buildings to resist progressive collapse. Unified Facilities Criteria (UFC) 4-023-03.