توسعه روش طراحی لرزه ای عملکردی ترکیبی برای قاب های مهاربندی شده واگرای منظم تحت اثر زلزله حوزه نزدیک گسل

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران

2 استادیار ، موسسه آموزش عالی جهاد دانشگاهی خوزستان، ایران

3 گروه مهندسی عمران، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران

چکیده

پیچیدگی محاسباتی روش‌های طراحی لرزه‌ای عملکردی باعث می‌شود اغلب مهندسین استفاده از روش های ساده تر نیرویی را در اولویت قرار دهند. وجود یک ارتباط کاربردی بین روش‌های نیرویی و عملکردی می‌تواند رافع این چالش باشد. روش ترکیبی از نقاط قوت روش طراحی بر مبنای عملکرد و سهولت محاسباتی روش‌های طراحی نیرویی برخوردار است. در این مقاله، قاب‌هایی با تعداد 3، 6، 9، 12، 15 و 20 طبقه با تعداد 3 دهانه به عرض 5متر در نظر گرفته شده است. طول تیرپیوند به‌عنوان یکی دیگر از پارامترهای مؤثر بر پاسخ، به میزان 1، 75/1 و 50/2 متر تعریف‌شده است. مدل‌های مورد بررسی پس از طراحی به روش کاهش بار و افزایش مقاومت، برای 3 سطح عملکردی استفاده بی‌وقفه، ایمنی جانی و آستانه فروریزش و نیز اولین رخداد مفصل خمیری، توسعه داده شده‌اند. مدل‌های نهایی تحت 20 رکورد نزدیک‌گسل دارای خصوصیات پالس‌گونه پیشرونده بکمک تحلیل تاریخچه زمانی تحلیل شده‌اند. در نهایت با بهره‌گیری از الگوریتم ژنتیک، رابطه‌های تجربی متناظر برای تعیین ضرایب رفتار، شکل‌پذیری تیر پیوند و شکل‌پذیری کلی ارائه شده است. بعلاوه یک فلوچارت جهت طراحی لرزه‌ای قاب‌های واگرا به کمک روابط تجربی استحصال شده، ارایه شده است. نهایتا جزییات روش طراحی معرفی شده، با حل یک مثال کاربردی ارایه شده است. نتایج حاصل از طراحی لرزه‌ای ترکیبی سازه‌های خارج از محدوده بانک داده‌ی تعریف شده، در مقایسه با روش‌های نیرویی، نشان از دقت این روش در تخمین نیازهای لرزه‌ای قاب‌های مهاربندی واگرا دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extension of Hybrid Force/Displacement Seismic Design (HFD) for Eccentric Braced Frames under Near-Fault Earthquakes

نویسندگان [English]

  • Seyed Abdonnabi Razavi 1
  • Navid Siahpolo 2
  • Mehdi Mahdavi Adeli 3
1 Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
2 Assistant Professor, Deptartment of Civil Engineering, Institute for High Education ACECR, Ahvaz, Iran
3 Department of Civil Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
چکیده [English]

The computational complexity of performance based seismic design methods makes most engineers prioritize the use of simpler force-based methods. Having a practical relationship between force and performance methods can solve this challenge. The hybrid force/displacement method has the advantages of the design method based on the performance and computational ease of force design methods. In this research, frames with 3, 6, 9, 12, 15 and 20 story with 3 bays with a width of 5 meters have been considered. The length of the link beam is defined as another parameter affecting the response, 1, 1.75 and 2.50 meters. The studied models have been developed by designing the method of load and resistance factor design method, for 3 performance levels of immediate occupancy, life safety and collapse prevention, as well as the first occurrence of the plastic joint. The final models are analyzed under 20 pulse-type near-fault records using time history analysis. Finally, using the genetic algorithm, the corresponding experimental relationships are presented to determine the behavior factor, local and global ductility. The proposed relationships are influenced by geometric characteristics such as the number of stories, the stiffness ratio of the columns, the slenderness of the braces, the length of the beam and the ductility levels. The results of the hybrid force/displacement seismic design of structures outside the range of the defined database, in comparison with the force methods, show the accuracy of this method in estimating the seismic needs of divergent bracing frames.

کلیدواژه‌ها [English]

  • Hybrid Force/Displacement Design
  • Time History Analysis
  • Seismic demand
  • Pulse-type near-fault earthquake
  • Genetic algorithm
[1]        M. Zameeruddin and K. K. Sangle, "Review on Recent developments in the performance-based seismic design of reinforced concrete structures," in Structures, 2016, vol. 6: Elsevier, pp. 119-133.
[2]        M. Gerami and D. Abdollahzadeh, "Estimation of forward directivity effect on design spectra in near field of fault," Journal of Basic and Applied Scientific Research, vol. 2, no. 9, pp. 8670-8686, 2012.
[3]        S. Loeding, M. J. Kowalsky, and M. N. Priestley, Direct displacement-based design of reinforced concrete building frames (no. 8). Division of Structural Engineering, University of California, San Diego, 1998.
[4]        S. Akkar, U. Yazgan, and P. Gülkan, "Drift estimates in frame buildings subjected to near-fault ground motions," Journal of Structural Engineering, vol. 131, no. 7, pp. 1014-1024, 2005.
[5]        E. Miranda, "Site-dependent strength-reduction factors," Journal of Structural Engineering, vol. 119, no. 12, pp. 3503-3519, 1993.
[6]        E. Miranda, "Approximate seismic lateral deformation demands in multistory buildings," Journal of Structural Engineering, vol. 125, no. 4, pp. 417-425, 1999.
[7]        E. Miranda and C. J. Reyes, "Approximate lateral drift demands in multistory buildings with nonuniform stiffness," Journal of Structural Engineering, vol. 128, no. 7, pp. 840-849, 2002.
[8]        F. Daneshjoo and M. Gerami, "Higher mode effects on seismic behavior of MDOF steel moment resisting frames," Journal of Seismology and Earthquake Engineering, vol. 5, no. 3, pp. 41-54, 2003.
[9]        T. Karavasilis, N. Bazeos, and D. Beskos, "Maximum displacement profiles for the performance based seismic design of plane steel moment resisting frames," Engineering Structures, vol. 28, no. 1, pp. 9-22, 2006.
[10]      R. A. Medina and H. Krawinkler, "Evaluation of drift demands for the seismic performance assessment of frames," Journal of Structural Engineering, vol. 131, no. 7, pp. 1003-1013, 2005.
[11]      T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Drift and ductility estimates in regular steel MRF subjected to ordinary ground motions: a design-oriented approach," Earthquake Spectra, vol. 24, no. 2, pp. 431-451, 2008.
[12]      A. I. Dimopoulos, N. Bazeos, and D. E. Beskos, "Seismic yield displacements of plane moment resisting and x-braced steel frames," Soil Dynamics and Earthquake Engineering, vol. 41, pp. 128-140, 2012.
[13]      Standard. No, "2800 “Iranian Code of Practice for Seismic Resistant Design of Buildings”," Third Revision, Building and Housing Research Center, Tehran, 2005.
[14]      R. Pekelnicky, S. D. Engineers, S. Chris Poland, and N. D. Engineers, "ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings," Proceedings of the SEAOC, 2012.
[15]      A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "Extension of the hybrid force/displacement (HFD) seismic design method to 3D steel moment-resisting frame buildings," Engineering Structures, vol. 147, pp. 486-504, 2017.
[16]      F. De Luca, I. Iervolino, and E. Cosenza, "Un-scaled, scaled, adjusted and artificial spectral matching accelerograms: displacement-and energy-based assessment," Proceedings of XIII ANIDIS,“L’ingegneria Sismica in Italia”, Bologna, Italy, 2009.
[17]      J. Hancock, "The influence of duration and the selection and scaling of accelerograms in engineering design and assessment," Imperial College London (University of London), 2006.
[18]      A. Fakhraddini, S. Hamed, and M. J. Fadaee, "Peak displacement patterns for the performance-based seismic design of steel eccentrically braced frames," Earthquake Engineering and Engineering Vibration, vol. 18, no. 2, pp. 379-393, 2019.
[19]      S. A. Razavi, N. Siahpolo, and M. Mahdavi Adeli, "A New Empirical Correlation for Estimation of EBF Steel Frame Behavior Factor under Near-Fault Earthquakes Using the Genetic Algorithm," Journal of Engineering, vol. 2020, 2020.
[20]      J. W. Baker, "Quantitative classification of near-fault ground motions using wavelet analysis," Bulletin of the Seismological Society of America, vol. 97, no. 5, pp. 1486-1501, 2007.
[21]      A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "A hybrid force/displacement seismic design method for steel building frames," Engineering Structures, vol. 56, pp. 1452-1463, 2013.
[22]      T. Karavasilis, N. Bazeos, and D. Beskos, "A hybrid force/displacement seismic design method for plane steel frames," in Proceedings of 1st European conference on earthquake engineering and seismology (1st ECEES), Geneva, Switzerland, 2006, pp. 3-8.
[23]      T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Estimation of seismic drift and ductility demands in planar regular X‐braced steel frames," Earthquake Engineering & Structural Dynamics, vol. 36, no. 15, pp. 2273-2289, 2007.
[24]      J. Akbari and M. S. Ayubirad, "Seismic optimum design of steel structures using gradient-based and genetic algorithm methods," International Journal of Civil Engineering, vol. 15, no. 2, pp. 135-148, 2017.
[25]      H. S. Park and C. W. Sung, "Optimization of steel structures using distributed simulated annealing algorithm on a cluster of personal computers," Computers & structures, vol. 80, no. 14-15, pp. 1305-1316, 2002.
[26]      M.-B. Prendes-Gero, A. Bello-García, J.-J. del Coz-Díaz, F.-J. Suárez-Domínguez, and P.-J. G. Nieto, "Optimization of steel structures with one genetic algorithm according to three international building codes," Revista de la Construcción. Journal of Construction, vol. 17, no. 1, pp. 47-59, 2018.
[27]      B. Standard, "Eurocode 8: Design of structures for earthquake resistance," Part, vol. 1, pp. 1998-1, 2005.