تحلیل پایداری شیروانی های سنگی به روش مرز بالای آنالیز حدی با در نظر گرفتن معیار خرابی هوک و براون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، دانشگاه صنعتی امیرکبیر، واحد دانشگاهی گرمسار

2 فارغ التحصیل کارشناسی ارشد، دانشگاه صنعتی امیرکبیر، واحد دانشگاهی گرمسار

چکیده

معمولاً شیروانی‌های سنگی در مقایسه با شیروانی‌های خاکی به دلیل ماهیت سنگی آن‌ها، مقاومت بیشتری داشته و به همین دلیل در برابر بارهای وارده، پایداری بیشتری دارند. اما این مساله به معنی عدم نیاز به تحلیل پایداری این نوع از شیروانی‌ها نیست، بدلیل اینکه بسیاری از پروژه‌های عمرانی در مجاورت شیب‌های سنگی ساخته می‌شوند که در صورت گسیختگی آن، خسارات جانی و مالی شدیدی به همراه خواهد شد. در تحقیق حاضر، به تحلیل پایداری شیروانی‌های سنگی با استفاده از معیار خرابی هوک و براون پرداخته شده و برای این تحلیل پایداری، از روش مرز بالای تحلیل حدی استفاده شده است. در بسیاری از تحقیقات گذشته در پایداری توده‌سنگ‌ها به روش مرز بالا، معیار خرابی هوک و براون خطی‌سازی شده است که این کار منجر به کاهش دقت نتایج بدست آمده می‌شود. نوآوری تحقیق حاضر نسبت به پژوهش‌های قبلی این است که در آن، با استفاده از روش معادل‌سازی چند خطی معیار غیرخطی هوک و براون، روابط جدیدی برای تعیین ضریب اطمینان شیروانی‌های سنگی ارائه شده که منجر به افزایش دقت نتایج شده است. از نتایج این تحقیق می‌توان پارامترهایی که تاثیر مستقیم یا معکوس بر پایداری شیب‌های سنگی دارند را شناسایی کرد و همچنین میزان تاثیر هر یک از این پارامترهای اثرگذار را تعیین کرد. طبق نتایج بدست آمده، بیشتر شدن مقاومت فشاری تک‌محوری سنگ بکر، شاخص مقاومت زمین‌شناسی و ثابت mi هوک و براون منجر به افزایش ضریب اطمینان پایداری و بیشتر شدن فاکتور دست‌خوردگی و وزن مخصوص توده‌سنگ، افزایش ارتفاع شیروانی و افزایش زاویه شیروانی نسبت به افق منجر به کاهش ضریب اطمینان پایداری می‌شود. همچنین نمودارهای ساده‌ای در این مقاله ارائه شده‌اند تا بتوان با استفاده از آنها، مقدار عدد پایداری و ضریب اطمینان مربوطه را برای پروژه‌های عملی بدست آورد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Upper Bound Stability Analysis of Rock Slopes Considering Hoek-Brown Failure Criterion

نویسندگان [English]

  • Meysam Imani 1
  • Arsham Amini 2
1 Assistant Professor, Amirkabir University of Technology, Garmsar Campus
2 M.Sc., Amirkabir University of Technology, Garmsar Campus
چکیده [English]

Rock slopes are commonly more stable than soil slopes when subjected to different types of external loadings. Despite the fact that rock masses are commonly stronger than soils, stability analysis is necessary even for rock slopes, since any failure of them may result in a huge loss of lives and wealth. In the present paper, upper bound method of limit analysis is employed for stability analysis of rock slopes obeying Hoek-Brown failure criterion. In many previous studies based on the upper bound method, the nonlinear Hoek-Brown criterion was linearized using a single straight line which resulted in reducing the accuracy of the obtained results. For improving the accuracy of the factor of safety of Hoek-Brown rock slopes, the present paper proposes a multi-tangential technique for linearizing the Hoek-Brown criterion, in which, the nonlinear criterion is replaced by several tangential lines to the main nonlinear criterion. This method results in improving the accuracy of the obtained factor of safety. Using the obtained results, the effect of different important parameters on the factor of safety of rock slopes can be evaluated. Increasing the uniaxial compressive strength of intact rock, Geological strength index and the Hoek-brown constant mi results in increasing the safety factor, while increasing the disturbance factor and the rock mass density, the slope height and the slope inclination results in decreasing the safety factor. Finally, simple charts are presented which are useful for quick determination of factor of safety and stability number of rock slopes in practical applications.

کلیدواژه‌ها [English]

  • Rock Slope
  • Upper Bound Method
  • Hoek-Brown
  • Stability Number
  • Factor of Safety
[1] Ping, D.D. Lian-heng, Z. Liang, L. (2017). Limit equilibrium analysis for rock slope stability using basic Hoek-Brown strength criterion. J. Central South University, 24, 2154-2163.
[2] Zheng, H. Li, T. Shen, J. Xu, C. Sun, H. Lü, Q. (2018). The effects of blast damage zone thickness on rock slope stability. Engineering Geology, 246, 19-27.
[3] Wei, Y. Jiaxin, L. Zoghong, L. Wei, W. Xiaoyun, S. (2020). A strength reduction method based on the Generalized Hoek-Brown (GHB) criterion for rock slope stability analysis. Comput. Geotech., 117, 103240.
[4] Kumar, V. Himanshu, N. Burman, A. (2019). Rock Slope Analysis with Nonlinear Hoek-Brown Criterion Incorporating Equivalent Mohr-Coulomb Parameters. Geotech. Geol. Eng., 37, 4741-4757.
[5] Rafiei Renani, H. Martin, D. (2020). Slope Stability Analysis using Equivalent Mohr-Coulomb and Hoek-Brown criteria. Rock Mech. Rock Eng., 53, 13-21.
[6] Drescher, A. Christopoulos, C. (1988). Limit analysis slope stability with nonlinear yield condition. Int. J. Numer. Anal. Meth. Geomech., 12, 341-345.
[7] Yang, XL. Li, L. Yin, JH. (2004). Stability analysis of rock slopes with a modified Hoek–Brown failure criterion. Int. J. Numer. Anal. Meth. Geomech., 28, 181-190.
[8] Li, AJ. Merifield, RS. Lyamin, AV. (2008). Stability charts for rock slopes based on the Hoek–Brown failure criterion. Int. J. Rock Mech. Mining Sci., 45, 689-700.
[9] Li, AJ. Merifield, RS. Lyamin, AV. (2011). Effect of rock mass disturbance on the stability of rock slopes using the Hoek-Brown failure criterion. Comput. Geotech., 38, 546-58.
[10] Okamoto, S. (1956). Bearing capacity of sandy soil and lateral earth pressure during earthquake. In: Proceedings of the first World Conf. Earthquake Eng. Berkeley, CA, 1-26.
[11] Siad, L. (2009). Seismic stability analysis of fractured rock slopes by yield design theory. Soil Dynam. Earthquake Eng., 23, 203-212.
[12] Yang, XL. (2007). Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion. Int. J. Rock Mech. Mining Sci., 44, 948-953.
[13] Donald, J.B. Chen, Z. (1997). Slope stability analysis by the upper bound approach fundamentals and methods. Canadian Geotechnical J., 853- 862.
[14] Michalowski, R.L. Park, D. (2020). Stability assessment of slopes in rock governed by the Hoek-Brown strength criterion. Int. J. Rock Mech. Min. Sci., 127, 104217.
[15] Park, D. Michalowski, R.L. (2021). Three-dimensional stability assessment of slopes in intact rock governed by the Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., 137, 104522.
[16] Mao, N. Al-bitter, T. Soubra, A. (2012). Probabilistic analysis and design of strip foundations resting on rocks obeying Hoek-Brown failure criterion. Int. J. Rock Mech. Min. Sci., 49, 45-58.
[17] AlKhafaji, H. Imani, M. Fahimifar, A. (2020). Ultimate Bearing Capacity of Rock Masse Foundations Subjected to Seepage Forces Using Modified Hoek-Brown Criterion. Rock Mech. Rock Eng., 53, 251-268.
[18] Shamloo, S. Imani, M. (2020). Upper bound solution for the bearing capacity of rock masses considering the embedment depth. Ocean Eng., 218, 108169.
[19] Shamloo, S. Imani, M. (2021). Upper bound solution for the bearing capacity of two adjacent footings on rock masses. Comput. Geotech., 129, 103855.
[20] Chen, W.F. and Liu, X.L. (1990). Limit analysis in soil mechanics. Amsterdam: Elsevier Science.
[21] Shen, J. Karakus, M. Xu, C. (2013). Chart-based slope stability assessment using the Generalized Hoek-Brown criterion. Int. J. Rock Mech. Min. Sci., 64(6), 210-219.
[22] Li, AJ. Cassidy, MJ. Wang, Y. Merifield, R.S., Lyamin, A.V. (2012). Parametric Monte Carlo studies of rock slopes based on the Hoek-Brown failure criterion. Comput. Geotech., 45, 11-18.
[23] Qian, Z.G. Li, AJ. Lyamin, AV. Wang, CC. (2017). Parametric studies of disturbed rock slope stability based on finite element limit analysis methods. Comput. Geotech., 81, 155-166.
[24] Sun, C. Chai, J. Xu, Z. Qin, Y. Chen, X. (2016). Stability charts for rock mass slopes based on the Hoek-Brown strength reduction technique. Engineering Geology, 214, 94-106.
[25] Nekouei, A.M. Ahangari, K. (2013). Validation of Hoek-Brown failure criterion charts for rock slopes. Int. J. Min. Sci. Tech., 23, 805-808.