استخراج مودهای نرمال غیرخطی سازه های دارای مصالح غیرخطی بر پایه روش تناوب مستقل

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی سازه، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

2 دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

چکیده

تقاضای روز‌افزون دنیای مدرن و افزایش نیاز صنایع به تحلیل‌هایی با سطوح دقت بالاتر، جامعه مهندسی را بر آن داشته تا با بسط روش-های خطی متداول پیشین به نواحی غیرخطی گامی اساسی را در راستای ارضای این نیاز بر‌دارد. در این میان، ارتقای مودهای نرمال خطی به‌عنوان یکی از فراگیرترین و محبوب‌ترین روش‌های تحلیلی، پنجره‌ای جدید به‌سوی تحلیلی نزدیک‌تر به واقعیت می‌گشاید. در این مقاله، پس از شناخت بنیادین مودهای نرمال غیرخطی، رویکردی جهت تحلیل سازه‌های چند درجه آزاد با مصالح غیرخطی تحت ارتعاش آزاد نامیرا پیشنهاد شده است. سپس با تمرکز بر روش‌های محاسبه، الگوریتمی نوین جهت شناسایی مودهای نرمال غیرخطی ارائه شده و با بسط این الگوریتم بر معادلات دیفرانسیل مانا به کار گرفته شده در تحلیل ارتعاش آزاد، امکان استخراج کلیه مودهای نرمال غیرخطی در حیطه مسئله فراهم گردیده است. پس از آن، به‌منظور بررسی عملکرد روش پیشنهادی، مدل اجزا محدودی یک سازه دو طبقه فولادی ایجاد شده و پس از اعتبارسنجی، در راستای تشکیل معادلات دیفرانسیل مانا به کار گرفته شده است. نهایتاً، پس از اعتبارسنجی روش تناوب مستقل، احجام مودهای نرمال غیرخطی شبه پیوستار و منحنی‌های انرژی - فرکانس سازه مذکور استخراج گشته‌اند. شایان‌ذکر است عدم وابستگی به پاسخ‌های پیشین در یافتن پاسخ بعدی، امکان دستیابی به مودهای نرمال غیرخطی با فرکانس‌های متفاوت در هر درجه آزادی، جذب تمامی رزونانس‌های داخلی، امکان بسط ساده مدل اجزا محدودی به یک مجموعه معادلات حرکت مانا و در نظر گرفتن مصالح غیرخطی در تحلیل، همگی از دستاورد‌های نوین این مقاله هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Normal Modes of structures with nonlinear material based on Independent Periodic Method

نویسندگان [English]

  • Arash Ghariblou 1
  • Asghar Vatani Oskouei 2
1 Structural Engineering Department, Civil Engineering Faculty, Shahid Rajaee Teacher Training University, Tehran, Iran
2 Faculty of Civil Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran.
چکیده [English]

Ever-increasing demands of the modern world and the growth of industry requirements toward more accurate analyses have made the engineering community develop the first fundamental step and meet the needs by extending the previous prevalent linear methods into nonlinear areas. In this regard, the improvement of linear modes as one of the most pervasive and widespread analytical methods opens a new window to analyses with more closeness to reality. In this paper, after the deep identification of Nonlinear Normal Modes, an approach is proposed to analyze the multi-degree-of-freedom structures with nonlinear material under undamped free vibration. Afterward, through an in-depth investigation of the calculation methods, a novel algorithm for identifying Nonlinear Normal Modes was proposed, and by expanding this algorithm to the existing invariable motion equation used in free vibration analysis, the possibility of the extraction of all Nonlinear Normal Modes has emerged. After that, to investigate the functionality of the proposed approach, the Finite Elements Method-based Model of a 2-story steel structure was developed and, after verification, it was used to form the invariable differential equations. Finally, after verifying the Independent Periodic Method, pseudo-continuous masses of Nonlinear Normal Modes and Frequency-Energy curves of the mentioned structure were calculated. It is worth noting that the independency of resulted response to previous points, the possibility of capturing Nonlinear Normal Modes with different frequencies in each degree-of-freedom, the potential of capturing all internal resonances, the expendability of Finite Elements Model to a set of invariable motion equations, and considering material nonlinearity are among achievements of the current paper.

کلیدواژه‌ها [English]

  • Nonlinear Normal Modes
  • Independent Periodic Method
  • Bifurcations
  • Nonlinear Dynamics
  • frequency-energy dependency
  • Internal Resonances
[1] Rosenberg, R. M., (1960), "Normal modes of nonlinear dual-mode systems."
[2] Rand, R. H., (1971), "A higher order approximation for non-linear normal modes in two degree of freedom systems," International Journal of Non-Linear Mechanics, 6(4), pp. 545-547.
[3] Vakakis, A. F., (1991), "Analysis and identification of linear and nonlinear normal modes in vibrating systems," California Institute of Technology.
[4] Vakakis, A. F., and Rand, R., (1992), "Normal modes and global dynamics of a two-degree-of-freedom non-linear system—II. High energies," International Journal of Non-Linear Mechanics, 27(5), pp. 875-888.
[5] Shaw, S., and Pierre, C., (1991), "Non-linear normal modes and invariant manifolds."
[6] Shaw, S. W., and Pierre, C., (1994), "Normal modes of vibration for non-linear continuous systems," Journal of sound and vibration, 169(3), pp. 319-347.
[7] Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., and Golinval, J.-C., (2009), "Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques," Mechanical systems and signal processing, 23(1), pp. 195-216.
[8] Renson, L., and Kerschen, G., (2013), "Nonlinear normal modes of nonconservative systems," Topics in Nonlinear Dynamics, Volume 1, Springer, pp. 189-202.
[9] Ibrahim, R., and Woodall, T., (1986), "Linear and nonlinear modal analysis of aeroelastic structural systems," Computers & structures, 22(4), pp. 699-707.
[10] Peeters, M., Kerschen, G., Golinval, J.-C., Stephan, C., and Lubrina, P., (Year) Published, "Nonlinear modal analysis of aerospace structures," Proc. Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 26-28.
[11] Noël, J.-P., Renson, L., Kerschen, G., Peeters, B., Manzato, S., and Debille, J., (Year) Published, "Nonlinear dynamic analysis of an F-16 aircraft using GVT data," Proc. Proceedings of the international forum on aeroelasticity and structural dynamics.
[12] Detroux, T., Renson, L., and Kerschen, G., (2014), "The harmonic balance method for advanced analysis and design of nonlinear mechanical systems," Nonlinear Dynamics, Volume 2, Springer, pp. 19-34.
[13] Joannin, C., Thouverez, F., and Chouvion, B., (2018), "Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis," Computers & Structures, 203, pp. 18-33.
[14] Chujo, T., Mori, O., and Kawaguchi, J., (2019), "Normal mode analysis of rubble-pile asteroids using a discrete element method," Icarus, 321, pp. 458-472.
[15] Strozzi, M., Smirnov, V. V., Manevitch, L. I., and Pellicano, F., (2020), "Nonlinear normal modes, resonances and energy exchange in single-walled carbon nanotubes," International Journal of Non-Linear Mechanics, 120, p. 103398.
[16] Kuether, R. J., and Allen, M. S., (2016), "Validation of nonlinear reduced order models with time integration targeted at nonlinear normal modes," Nonlinear Dynamics, Volume 1, Springer, pp. 363-375.
[17] Ehrhardt, D. A., Hill, T. L., and Neild, S. A., (2019), "Experimentally measuring an isolated branch of Nonlinear normal modes," Journal of Sound and Vibration, 457, pp. 213-226.
[18] Ferhatoglu, E., Cigeroglu, E., and Özgüven, H. N., (2020), "A novel modal superposition method with response dependent nonlinear modes for periodic vibration analysis of large MDOF nonlinear systems," Mechanical Systems and Signal Processing, 135, p. 106388.
[19] Jahan, S., Hoseinzadeh, Y., and Mojtahedi, A., (2017), "Steel bridges structural health monitoring based on operational modal analysis accommodating evaluation of uncertainty," Journal of Structural and Construction Engineering, 4(3), pp. 5-17.
[20] Shankar, K. A., and Pandey, M., (2016), "Nonlinear dynamic analysis of cracked cantilever beam using reduced order model," Procedia Engineering, 144, pp. 1459-1468.
[21] Najafgholipour, M. A., Darvishi, h., Dehghan, S. M., and Maheri, M. R., (2018), "Empirical Equations for Estimation of the Fundamental Vibration Frequency of Historical Masonry Towers," Journal of Structural and Construction Engineering.
[22] ghamari, m., and Gholhaki, m., (2019), "Calculate the main rotation time of the composite steel shear wall and examine the effect of the crater and the thickness of the concrete coating on it," Journal of Structural and Construction Engineering.
[23] Meyrand, L., Sarrouy, E., Cochelin, B., and Ricciardi, G., (2019), "Nonlinear normal mode continuation through a Proper Generalized Decomposition approach with modal enrichment," Journal of Sound and Vibration, 443, pp. 444-459.
[24] Alijani, A., Khomami Abadi, M., and Razzaghi, J., (2018), "A new technique in the modal analysis of cracked reinforced concrete (RC) beams through the finite element method," Journal of Structural and Construction Engineering.
[25] Peter, S., Scheel, M., Krack, M., and Leine, R. I., (2018), "Synthesis of nonlinear frequency responses with experimentally extracted nonlinear modes," Mechanical Systems and Signal Processing, 101, pp. 498-515.
[26] Aghayari, R., rahimi, F., and Samali, B., (2020), "Experimental Investigation on the Performance of Tuned Mass Damper Embedded on Steel Frame under earthquake excitation and Estimation of the Modal Parameters," Journal of Structural and Construction Engineering.
[27] Bagheri, S., and Hayati Raad, H., (2019), "Parametric study on dynamic behavior of liquid storage tanks subjected to pulse-like excitations," Journal of Structural and Construction Engineering, 6(Issue 2), pp. 75-86.
[28] Kerschen, G., Peeters, M., Golinval, J.-C., and Vakakis, A. F., (2009), "Nonlinear normal modes, Part I: A useful framework for the structural dynamicist," Mechanical systems and signal processing, 23(1), pp. 170-194.
[29] Peeters, M., (2010), "Theoretical and experimental modal analysis of nonlinear vibrating structures using nonlinear normal modes," Ph. D. Thesis, University of Ličge.
[30] Renson, L., (2014), "Nonlinear modal analysis of conservative and nonconservative aerospace structures," Ph. D. thesis, Université de Liège, Liège.
[31] Li, X., Ji, J., and Hansen, C. H., (2006), "Non-linear normal modes and their bifurcation of a two DOF system with quadratic and cubic non-linearity," International Journal of Non-Linear Mechanics, 41(9), pp. 1028-1038.
[32] Jahn, M., Tatzko, S., Panning-von Scheidt, L., and Wallaschek, J., (2019), "Comparison of different harmonic balance based methodologies for computation of nonlinear modes of non-conservative mechanical systems," Mechanical Systems and Signal Processing, 127, pp. 159-171.
[33] Kuether, R. J., and Allen, M. S., (2014), "A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models," Mechanical Systems and Signal Processing, 46(1), pp. 1-15.
[34] Renson, L., Kerschen, G., and Cochelin, B., (2016), "Numerical computation of nonlinear normal modes in mechanical engineering," Journal of Sound and Vibration, 364, pp. 177-206.
[35] Kim, S.-E., Kang, K.-W., and Lee, D.-H., (2003), "Full-scale testing of space steel frame subjected to proportional loads," Engineering structures, 25(1), pp. 69-79.