بررسی رفتار لرزه‌ای دیوار برشی با پی انحنادار

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

2 گروه عمران،دانشکده فنی مهندسی،دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

3 گروه عمران، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران

4 خاک و پی،دانشکده فنی،دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

حرکت گهواره‌ای پی شامل رفتارهای غیرخطی هندسی پی و مصالح خاک در حین تحریکات قوی لرزه‌ای می‌باشد که در سال‌های اخیر توسط محققین به عنوان تغییری در طراحی سنتی مطرح شده است. در این تحقیق، عملکرد حرکت گهواره‌ای و انعطاف‌پذیری پی‌های سطحی با سطح انحناءدار مورد بررسی قرار گرفته است. بدین منظور، رفتار این نوع پی‌ها در مقایسه با پی‌های سطحی معمولی و تأثیر آن بر نحوه رفتار روسازه به صورت پی و دیوار برشی بتنی با نسبت‌های ابعادی متفاوت مطالعه شده است؛ شش مدل سیستم دیوار برشی با دو نوع پی ساده و انحناء‌دار در نرم‌افزار OpenSees به روش تیر بر فونداسیون وینکلر غیرخطی ((BNWF مدل‌سازی شده است. در روش BNWFیک سری فنرهای مستقل غیرخطی برای در نظرگرفتن رفتار خاک در زیر پی قرار می‌گیرند که به اعضای پی متصل می‌گردند تا نشست، لغزش و حرکت گهواره‌ای پی را مدل‌سازی نمایند. برای بررسی رفتار سیستم پی-دیوار منحنی‌های پوش‌آور و نیرو-نشست استخراج می‌گردند. نتایج حاصل از نرم‌افزار OpenSees نشان داد که سیستم پی انحناء‌دار دارای برش پایه و نشست-های نهایی کمتر نسبت به سیستم با پی ساده می‌باشد که با افزایش ارتفاع دیوار برشی، میزان کاهش در مقدار برش پایه افزایش می-یابد؛ همچنین سیستم پی انحناء‌دار با دیواربرشی در مقایسه با پی تخت دارای نسبت سطح تماس بحرانی کمتری بوده که با افزایش ارتفاع دیوار برشی مقدار آن کاهش و مقدار ضریب خودبازگشتی سیستم پی-دیوار افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of seismic behavior of shear walls with curved foundation

نویسندگان [English]

  • Farhad Salehi Rad 1
  • jamshid sabouri 2
  • Fariba Behrouz Sarand 3
  • Hosein Soltani Jighe 4
1 دانشجوی دکتری، دانشگاه آزاد اسلامی واحد تبریز، تبریز، ایران
2 Department of Civil Engineering.Islamic Azad university,branch of Tabriz,Tabriz,Iran
3 civil engineering department, Islamic, Azad, Tabriz Branch, Tabriz, Iran
4 Civil Engineering Department, Shahid Madani University, Tabriz, Iran
چکیده [English]

Shallow foundation rocking movement include the nonlinear behavior of the foundation and soil material during strong earthquake motions that it has been proposed by researchers in recent years as a change in traditional design. In this research, the performance of rocking motion and flexibility of shallow foundations with curved surface have been discussed. For this purpose, the behavior of this type compared to normal shallow foundation and its effect on the behavior of concrete wall-foundation system with different aspect ratios have been studied. Six models of shear wall system with simple and curved foundation modeled by BNWF (Beam on Nonlinear Winkler Foundation) method in OpenSees software. In BNWF method, a series of distributed independent nonlinear soil springs are generated along the footing length and connected to footing elements to simulate the foundation movement including sliding, rocking and settlement. For investigation the behavior of wall-foundation system the pushover and force-settlement curves are extracted. In the results obtained from OpenSees software, the curved foundation with shear wall has lower base shear and ultimate settlement than a simple foundation that with increasing shear wall height the base shear difference was 30 percent increased. In the time history analysis results was observed that the maximum base shear was decreased between 14 to 17 percent in the system with curved foundation, and also has lower critical contact area that with increasing shear wall height was decreased and self-centering coefficient of wall-foundation system was increased.

کلیدواژه‌ها [English]

  • curved shallow foundation
  • rocking
  • BNWF method
  • pushover
  • self-centering coefficient
[1] Raychowdhury, P. (2008). Nonlinear Winkler-Based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures. Ph.D. Dissertation, University of California, San Diego, CA.
 
 
[2] Pelekis, I., Madabhushi, G., Dejong, M. (2019). Soil behavior beneath buildings with structural and foundation rocking, Journal of Soil Dynamics and Earthquake Engineering, 123, 48–49.
 
 [3] Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M., and Gerolymos, N. (2010). Soil failure can be used for seismic protection of structures, Bull. Earthq. Eng. 8, 309–313.
 
[4] Liu, W., Hutchinson, T. C., Kutter, B. L., Hakhamaneshi, M., Aschheim, M., and Kunnath, S. (2013). Demonstration of compatible yielding between soil-foundation and superstructure components, Journal of Structural Engineering, ASCE, 139, 1408–1409.
[5] Harden, C.W., Hutchinson, T., Martin, G.R., Kutter, B.L. (2005). Numerical modeling of the nonlinear cyclic response of shallow foundations, Report No. PEER-2005/04.Pacific Earthquake Engineering Research Center, University of California, Berkeley.
[6] Gajan, S. (2006). Physical and Numerical Modeling of Nonlinear Cyclic Load-Deformation Behavior of Shallow foundations Supporting Rocking Shear Walls. PhD dissertation, University of California, Davis.
 [7] Mohammadi, A., Tahghighi H. (2019). Seismic performance assessment of RC MRF buildings on shallow foundations incorporating soil-structure interaction. Journal of Civil Environ. Eng. 48 (4): 63–77.
 [8] Mazzoni S., McKenna F., Scott M.H., Fenves G.L. (2009) - Open system for earthquake engineering simulation user command-language manual - Pacific Earthquake Engineering Research center, Berkeley, CA.
[9] Raychowdhury, P., Hutchinson, T.C. (2011). Performance of seismically loaded shear-walls on nonlinear shallow foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 35 (7), 846–858.
 
[10] Wang, L., Ishihara, T. (2020). A study of the effects of foundation uplift on the seismic loading of wind turbine tower and shallow foundation using a new dynamic Winkler model, Journal of Engineering Structures, 219, 12–13. 
 
[11] Hakhamaneshi, M., Kutter, B.L., Deng, L., Johnson, K., Hutchinson, T.C. & Liu, W. (2012). Observed effects of footing shape on settlements caused by foundation rocking. 15th World Congress on Engineering Education.
[12] Liu, W., Gavras, A.G., Hakhamaneshi, M., Kutter, B. L. and Hutchinson, T. C. (2013). “Compatible soil and structure yielding to improve system performance.” Centrifuge Data Report for Test Series MAH03, Report No. UCD/CGMDR-13/12, Center for Geotechnical Modeling, University of California, Davis.
[13] Liu, w., Hutchinson, T. (2015). Modeling of Foundation-Soil Systems Using Plane-Strain Elements, International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.
[14] Tahghighi H., Mohammadi A. (2020). Numerical Evaluation of Soil–Structure Interaction Effects on the Seismic Performance and Vulnerability of Reinforced Concrete Buildings. International Journal of Geomechanics., 117(9), 1363–1381.
[15] Buitrago Goyez, L. (2017). Soil-Structure Interaction Effects on the Seismic Response of Low-Rise Eccentrically Braced Frames. Ms.c. thesis, University of Arkansas.
 
[16] Raychowdhury, P. and Hutchinson, T. (2009), Performance evaluation of a nonlinear winkler-based shallow foundation model using centrifuge test results, Journal of Earthquake Engineering and Structural Dynamics, 38, 679–698.
 
[17] Bhaumik, L. and Raychowdhury, P. (2013), Seismic response analysis of a nuclear reactor structure considering  nonlinear soil-structure interaction, Journal of Nuclear Engineering and Design, 265 (4), 1078–1090.
[18] Gazetas, G. (1991). Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering., 117(9), 1363–1381.
[19] Pais A., Kausel E. (1988). Approximate formulas for dynamic stiffnesses of rigid foundations. International Journal of Geomechanics., Journal of Geotechnical and Geoenvironmental Engineering.
 [20] Boulanger, R., Curras, C., Kutter, B., Wilson, D., and Abghari, A. (1999), Seismic soil-pile structure interaction experiments and analyses, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125, 750–759.
 [21] Mander, J., Priestley, M. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering  1804-1826.
 
 
[2] Pelekis, I., Madabhushi, G., Dejong, M. (2019). Soil behavior beneath buildings with structural and foundation rocking, Journal of Soil Dynamics and Earthquake Engineering, 123, 48–49.
 
 [3] Anastasopoulos, I., Gazetas, G., Loli, M., Apostolou, M., and Gerolymos, N. (2010). Soil failure can be used for seismic protection of structures, Bull. Earthq. Eng. 8, 309–313.
 
[4] Liu, W., Hutchinson, T. C., Kutter, B. L., Hakhamaneshi, M., Aschheim, M., and Kunnath, S. (2013). Demonstration of compatible yielding between soil-foundation and superstructure components, Journal of Structural Engineering, ASCE, 139, 1408–1409.
[5] Harden, C.W., Hutchinson, T., Martin, G.R., Kutter, B.L. (2005). Numerical modeling of the nonlinear cyclic response of shallow foundations, Report No. PEER-2005/04.Pacific Earthquake Engineering Research Center, University of California, Berkeley.
[6] Gajan, S. (2006). Physical and Numerical Modeling of Nonlinear Cyclic Load-Deformation Behavior of Shallow foundations Supporting Rocking Shear Walls. PhD dissertation, University of California, Davis.
 [7] Mohammadi, A., Tahghighi H. (2019). Seismic performance assessment of RC MRF buildings on shallow foundations incorporating soil-structure interaction. Journal of Civil Environ. Eng. 48 (4): 63–77.
 [8] Mazzoni S., McKenna F., Scott M.H., Fenves G.L. (2009) - Open system for earthquake engineering simulation user command-language manual - Pacific Earthquake Engineering Research center, Berkeley, CA.
[9] Raychowdhury, P., Hutchinson, T.C. (2011). Performance of seismically loaded shear-walls on nonlinear shallow foundations. International Journal for Numerical and Analytical Methods in Geomechanics, 35 (7), 846–858.
 
[10] Wang, L., Ishihara, T. (2020). A study of the effects of foundation uplift on the seismic loading of wind turbine tower and shallow foundation using a new dynamic Winkler model, Journal of Engineering Structures, 219, 12–13. 
 
[11] Hakhamaneshi, M., Kutter, B.L., Deng, L., Johnson, K., Hutchinson, T.C. & Liu, W. (2012). Observed effects of footing shape on settlements caused by foundation rocking. 15th World Congress on Engineering Education.
[12] Liu, W., Gavras, A.G., Hakhamaneshi, M., Kutter, B. L. and Hutchinson, T. C. (2013). “Compatible soil and structure yielding to improve system performance.” Centrifuge Data Report for Test Series MAH03, Report No. UCD/CGMDR-13/12, Center for Geotechnical Modeling, University of California, Davis.
[13] Liu, w., Hutchinson, T. (2015). Modeling of Foundation-Soil Systems Using Plane-Strain Elements, International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand.
[14] Tahghighi H., Mohammadi A. (2020). Numerical Evaluation of Soil–Structure Interaction Effects on the Seismic Performance and Vulnerability of Reinforced Concrete Buildings. International Journal of Geomechanics., 117(9), 1363–1381.
[15] Buitrago Goyez, L. (2017). Soil-Structure Interaction Effects on the Seismic Response of Low-Rise Eccentrically Braced Frames. Ms.c. thesis, University of Arkansas.
 
[16] Raychowdhury, P. and Hutchinson, T. (2009), Performance evaluation of a nonlinear winkler-based shallow foundation model using centrifuge test results, Journal of Earthquake Engineering and Structural Dynamics, 38, 679–698.
 
[17] Bhaumik, L. and Raychowdhury, P. (2013), Seismic response analysis of a nuclear reactor structure considering  nonlinear soil-structure interaction, Journal of Nuclear Engineering and Design, 265 (4), 1078–1090.
[18] Gazetas, G. (1991). Formulas and charts for impedances of surface and embedded foundations. Journal of Geotechnical Engineering., 117(9), 1363–1381.
[19] Pais A., Kausel E. (1988). Approximate formulas for dynamic stiffnesses of rigid foundations. International Journal of Geomechanics., Journal of Geotechnical and Geoenvironmental Engineering.
 [20] Boulanger, R., Curras, C., Kutter, B., Wilson, D., and Abghari, A. (1999), Seismic soil-pile structure interaction experiments and analyses, ASCE Journal of Geotechnical and Geoenvironmental Engineering, 125, 750–759.
 [21] Mander, J., Priestley, M. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering  1804-1826.