بررسی رفتار سازه‌ فولادی قاب خمشی متّکی بر پی‌های عمیق تحت اثر حرکت نسبی حاصل از شکست گسل نرمال

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری سازه، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

2 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور،نور ایران

3 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

4 استادیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه دامغان، دامغان، ایران

چکیده

زلزله‌های اخیر نشان داد که درکنار نیروهای لرزه‌ای، اندرکنش بین گسلش و سازه می‌تواند منجر به خسارت زیادی به سازه‌های سطحی و زیرزمینی شود. در این مطالعه، مدل المان محدود سه بعدی در برنامه‌ اجزاء محدود آباکوس به منظور مطالعه رفتار یک سازه‌ 9 طبقه فولادی با سیستم قاب خمشی متّکی بر سه نوع پی گسترده، گروه شمع و دیواره‌ دیافراگمی واقع بر خاک ماسه‌ای مورد استفاده قرار گرفت. تحلیل بکار گرفته شده در این مطالعات از نوع استاتیکی غیرخطی و نوع بارگذاری به صورت کنترل تغییرمکان در بستر خاک می‌باشد. عملکرد سیستم سازه-پی با در نظر گرفتن اهداف عملکردی سازه‌ای و ژئوتکنیکی نظیر نسبت دریفت طبقات، تغییرمکان پی و توزیع لنگر خمشی و نیروی برشی در طول بدنه شمع و پی مورد ارزیابی قرار گرفت. در این مطالعه، موقعیّت پی نسبت به خط اثر گسل و نوع پی به عنوان پارامترهای کلیدی در نظر گرفته شدند. نتایج تحلیل نشان داد بهترین عملکرد در کاهش نسبت دریفت ماندگار طبقات مربوط به سازه با سیستم دیواره دیافراگمی در پی است که در وضعیّتی که لبه پی به محل خط اثر گسل مماس باشد، این مقدار به 62/1 درصد می‌رسد. همچنین در اکثر حالات، در مقادیر کوچک بالاآمدگی گسل، سیستم پی گسترده دارای نشست تفاضلی کمتری نسبت به سایر پی‌های مورد بررسی در این مطالعه بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of steel moment-resisting frame relies on deep foundation under normal fault rupture

نویسندگان [English]

  • Omid Nooralizadeh 1
  • Sepideh Rahimi 2
  • Mohamad Hoseinzadeh 3
  • Mehdi Ebadi Jamkhaneh 4
1 Ph.D. Candidate of Structural Engineering,, Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran.
2 Assistant Professor, Department of Civil Engineering, School of Engineering, Islamic Azad University Nour branch,, Nour, Iran.
3 Assistant Professor, Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
4 Assistant Professor, Department of Civil Engineering, School of Engineering, Damghan University, Damghan, Iran
چکیده [English]

Recent earthquakes have shown that, besides the seismic forces, the interaction between faults and structures could cause extensive damage to the surface and underground structures. Field observations showed that the need for design measures and regulations for fault loading due to fault movement in areas with active faults seems necessary. In this study, the three-dimensional finite element model in Abaqus finite element program to study the behaviour of a 9-story steel structure with a moment frame system based on three types of mat foundations, piles group, and diaphragm walls was used on sandy soil. The performance of the structural-foundation system was evaluated taking into account the structural and geotechnical performance goals such as the drift ratio of floor levels, displacement of the foundation and distribution of bending moment and shear force along with the pile and foundation. In this study, the position of the foundation relative to the fault line and the foundation type were considered as key parameters. The results of the analysis showed that the best performance in reducing the ratio of the permanent drift ratio of the floors related to the structure with the diaphragm wall system. This was in the case that the edge of the foundation is tangent to the fault line, this value reaches 1.62%. Also, in most cases, in small amounts of fault movements, the mat foundation system had a smaller difference than the other considered foundation system in this study.

کلیدواژه‌ها [English]

  • soil-structure interaction
  • normal fault rupture
  • fault angle
  • steel structure
  • permanent drift ratio
[1] Faccioli E, Anastasopoulos I, Gazetas G, Callerio A, Paolucci R. Fault rupture–- foundation interaction: selected case histories. Bull Earthq Eng 2008;6(4):557–83.
[2] Anastasopoulos I, Gazetas G. Foundation–structure systems over a rupturing normal fault: Part II. Analysis of the Kocaeli case histories. Bull Earthq Eng 2007;5(3):277–301.
[3] Anastasopoulos I, Gazetas G. Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake. Bull Earthq Eng 2007;5(3):253–75.
[4] Ulusay R, Aydan O, Hamada M. The behaviour of structures built on active fault zones: examples from the recent earthquakes of Turkey. Struct Eng/Earthq Eng 2002;19(2):149–67.
[5] Pamuk A, Kalkan E, Ling HI. Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey. Soil Dyn Earthquake Eng 2005;25(7):581–9.
[6] Baziar MH, Nabizadeh A, Jabbary M. Numerical modeling of interaction between dip-slip fault and shallow foundation. Bull Earthq Eng 2015;13(6):1613–32.
[7] Anastasopoulos I, Callerio A, Bransby MF, Davies MCR, Nahas AE, Faccioli E, et al. Numerical analyses of fault–foundation interaction. Bull Earthq Eng 2008;6(4):645–75.
[8] Loli M, Anastasopoulos I, Gazetas G. Nonlinear analysis of earthquake fault rupture interaction with historic masonry buildings. Bull Earthq Eng 2015;13(1):83–95.
[9] Bransby MF, Davies MCR, Nahas AE. Centrifuge modelling of normal fault–foundation interaction. Bull Earthq Eng 2008;6(4):585–605.
[10] Moosavi S, Jafari M, Kamalian M, Shafiee A. Experimental investigation of reverse fault rupture–rigid shallow foundation interaction. Int J Civil Eng 2010;8(2):85–98.
[11] Ahmed W, Bransby MF. Interaction of shallow foundations with reverse faults. J Geotech Geoenviron Eng 2009;135(7):914–24.
[12] Bransby M, Davies M, El Nahas A, Nagaoka S. Centrifuge modelling of reverse fault–foundation interaction. Bull Earthq Eng 2008;6(4):607–28.
[13] Anastasopoulos I, Kourkoulis R, Gazetas G, Tsatsis A. Interaction of piled foundation with a rupturing normal fault. Geotechnique 2013;63(12):1042–59.
[14] Loli M, Bransby M, Anastasopoulos I, Gazetas G. Interaction of caisson foundations with a seismically rupturing normal fault: centrifuge testing versus numerical simulation. Geotechnique 2012;62(1):29–43.
[15] Gazetas G, Zarzouras O, Drosos V, Anastasopoulos I. Bridge-Pier Caisson foundations subjected to normal and thrust faulting: physical experiments versus numerical analysis. Meccanica 2015;50(2):341–54.
[16] Bray JD. Developing mitigation measures for the hazards associated with earthquake msurface fault rupture. Workshop on seismic fault-induced failures—possible remedies for damage to urban facilities. University of Tokyo Press; 2001. p. 55–79.
[17] Bray JD. Designing buildings to accommodate earthquake surface fault rupture. In: Improving the seismic performance of existing buildings and other structures; 2010. p. 1269–80.
[18] Fadaee M, Ezzatyazdi P, Anastasopoulos I, Gazetas G. Mitigation of reverse faulting deformation using a soil bentonite wall: Dimensional analysis, parametric study, design implications. Soil Dyn Earthquake Eng 2016;89:248–61.
[19] Rasouli H, Fatahi B. Geosynthetics reinforced interposed layer to protect structures on deep foundations against strike-slip fault rupture. Geotextiles and Geomembranes 2021;49(3):722-736.
[20] Azizkandi AS, Ghavami S, Baziar MH, Hasanaklou, SH. Assessment of damages in fault rupture-shallow foundation interaction due to the existence of underground structures. Tunnelling and Underground Space Technology 2019;89:222-237.
[21] Yao C, Takemura J, Zhang J. Centrifuge modeling of single pile-shallow foundation interaction in reverse fault. Soil Dynamics and Earthquake Engineering 2021;141:106538.
[22] Yao C, Yan Q, Sun M, Dong W, Guo D. Rigid diaphragm wall with a relief shelf to mitigate the deformations of soil and shallow foundations subjected to normal faulting. Soil Dynamics and Earthquake Engineering 2020;137:106264.
[23] Yang KH, Chiang J, Lai CW, Han J, Lin ML. Performance of geosynthetic-reinforced soil foundations across a normal fault. Geotextiles and Geomembranes 2020;48(3):357-373.
[24] ABAQUS V. 6.14. Online documentation help, theory manual: Dassault Systms. Accessed on; 2016.
[25] AISC (2010). Specification for Structural Steel Buildings. ANSI/AISC 360-10, American Institute of Steel Construction, Chicago, IL.
[26] Code 2800.; “Iranian code of practice for seismic resistant design of buildings”; Third Revision, Building and Housing Research Center, Iran (in persian) (2015).
[27] Computers and Structures. (2014). Inc., CSI Analysis Reference Manual for SAP2000, ETABS and SAFE, Computer and Structures, Inc., Berkley, California.
[28] Hogenstad. E., "A study Of Combined Bending And Axial Load In Reinforced Concrete Members”, Bulletin No 399,Engineering Experiment Station, University Of Illinios.Urbana,1951.
[29] ACI 318-14, “Building Code Requirements for Structural Concrete and Commentary”, American Concrete Institute, Farmington Hills, Michigan, February, 68 pp.
[30] Council BSS. NEH’RP guidelines for the seismic rehabilitation of buildings. FEMA-273. Washington, DC: Federal Emergency Management Agency; 1997.
[31] Jahd Azma Consulting Engineers. Site investigation and geotechnical report of Mashhad Jahan Mall Iran; 2015. p. 1–50.