تأثیر مشخصات لایه خاک روانگرا در اندرکنش خاک-تک شمع - سازه توربین‌های بادی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 هیات علمی گروه عمران، دانشکده فنی و مهندسی، دانشگاه خوارزمی،

2 دانشجوی دکتری، دانشگاه خوارزمی، تهران، ایران

چکیده

هدف اصلی برنامه توسعه پایدار سال 2030 توسعه دسترسی به انرژی‌های تجدیدپذیر، پایدار، قابل اطمینان و مقرون به صرفه است. از جمله انرژی‌های تجدید‌پذیر می‌توان به انرژی باد و استفاده از توربین‌های بادی اشاره کرد. این توربین‌های عمدتا در مناطق ساحلی یا فراساحلی لرزه‌خیز و مستعد روانگرایی استفاده می‌شود‌. رشد اجرای این توربین‌ها در مناطق لرزه‌خیز توام با بستر روانگرا استفاده از شمع‌ها و سایر فونداسیون‌های عمیق را ضروری کرده است. در این مقاله تغییر مشخصات لایه خاک روانگرا در اندرکنش خاک-تک شمع - سازه توربین‌های بادی در چهار نوع ماسه روانگرا با ضخامت 5 متر‌، تحت بار توربین 2 کیلو وات و تاثیر 14 رکورد زمین‌لرزه حوزه دور و نزدیک مورد بررسی قرار گرفته است. تحلیل تاریخچه زمانی غیرخطی با در نظرگرفتن مدل رفتاری مناسب برای لایه‌های خاک، اندرکنش بین شمع و خاک به روزش مستقیم در نرم افزار OpenSees انجام شده است. نتایج نشان می‌دهد که در زمین‌لرزه‌های با بیشینه شتاب‌ کمتر از g 4/0 ، در خاک‌های ماسه‌ای با تراکم بیش از 70 % روانگرایی رخ نمی‌دهد. بیشترین جابجایی به شمع در خاکی که زاویه اصطکاک داخلی (ɸ=30) و کمترین درصد تراکم را دارد، اتفاق می‌افتد. با وقوع روانگرایی در لایه میانی تراز اتکای گیرداری شمع از حوالی سطح زمین به انتهای لایه روانگر منتقل می‌گردد. همچنین نتایج نشان داد، مقادیر حداکثر فشار منفذی، لنگر خمشی و نیروی برشی خاک تحت زمین لرزه‌های حوزه دور و نزدیک با افزایش تراکم خاک کاهش می‌یابد و این کاهش برای زلزله‌های حوزه دور مشهودتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of liquefied soil properties on soil-monopile-wind turbine structure interaction

نویسندگان [English]

  • Gholamreza Nouri 1
  • Mehran Tirandazian 2
1 Faculty of Engineering, Kharazmi university, Tehran, Iran.
2 PhD student, Faculty of Engineering, Kharazmi University, Tehran, Iran
چکیده [English]

The main goal of the 2030 sustainable development plan is to develop access to renewable, sustainable, reliable and cost-effective energy. One of the renewable energy sources is wind energy, which is produced using wind turbines. These turbines are mainly used in coastal or offshore areas that are seismic and liquefied. The development of these turbines in areas with high seismic potential and liquefied soils has necessitated the use of piles and other deep foundations. In this paper, the effect of liquefied soil layer characteristics on the soil-mono pile interaction under the effects of far and near field earthquake records has been investigated. Dynamic nonlinear time history analyses were performed by considering four types of liquefied sand with a thickness of 5 m, under 2 kW turbine load and the effect of 14 earthquake records. Nonlinear analyses are performed in OpenSees software by considering the appropriate behavioral model for soil layers and the interaction between the pile and the soil. The results showed that in earthquakes with a PGA less than 0.4 g and in sandy soils with a density of more than 70% liquefaction does not occur. The highest displacement is related to the pile located in T1 soil, which has the lowest internal friction angle (ɸ = 30) and the lowest soil compaction percentage. With the occurrence of liquefaction in the middle layer, the support level of the monopile is transferred from ground to the end of the liquefiable layer. Based on the results the values of maximum pore pressure, flexural moment and shear force of the soil under near and far-field records decrease with increasing soil density that is more evident for far-field earthquakes.

کلیدواژه‌ها [English]

  • monopile wind turbine
  • liquefied soil
  • far field earthquake
  • near field earthquake
  • soil-monopile-wind turbine structure interaction
[1]   Li J, Wang X, Guo Y, Yu XB. The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments. Renew Energy 2020;152:1109–20. https://doi.org/10.1016/j.renene.2020.01.112.
[2]   Risi D, Bhattacharya S, Goda K. Seismic performance assessment of monopile-supported o ff shore wind turbines using unscaled natural earthquake records 2018;109:154–72. https://doi.org/10.1016/j.soildyn.2018.03.015.
[3]   Kausel E. Early history of soil-structure interaction. Soil Dyn Earthq Eng 2010;30:822–32. https://doi.org/10.1016/j.soildyn.2009.11.001.
[4]   Bhattacharya S, Nikitas G, … LA-IE and, 2017 U. Soil-Structure Interactions (SSI) for Offshore Wind Turbines. Inst Eng Technol 2017.
[5]   Kjørlaug RA, Kaynia AM. Vertical earthquake response of megawatt‐sized wind turbine with soil‐structure interaction effects. Earthq Eng Struct Dyn 2015;44:2341–58.
[6]   Zhang C, Zhang Q, Wu Z, Zhang J, Sui T, Wen Y. Numerical Study on Effects of the Embedded Monopile Foundation on Local Wave-Induced Porous Seabed Response. Math Probl Eng 2015;2015. https://doi.org/10.1155/2015/184621.
[7]   Cui L, Bhattacharya S, Nikitas G, Bhat A. Macro ‑ and micro ‑ mechanics of granular soil in asymmetric cyclic loadings encountered by offshore wind turbine foundations. Granul Matter 2019. https://doi.org/10.1007/s10035-019-0924-4.
[8]   Austin S, Jerath S. Effect of soil-foundation-structure interaction on the seismic response of wind turbines. Ain Shams Eng J 2017;8:323–31.
[9]   Page AM, Skau KS, Jostad HP, Eiksund GR. A New Foundation Model for Integrated Analyses of Monopile-based Offshore Wind Turbines. Energy Procedia 2017;137:100–7. https://doi.org/10.1016/j.egypro.2017.10.337.
[10] Wang P, Zhao M, Du X, Liu J, Xu C. Wind, wave and earthquake responses of offshore wind turbine on monopile foundation in clay. Soil Dyn Earthq Eng 2018;113:47–57. https://doi.org/10.1016/j.soildyn.2018.04.028.
[11] Patra SK, Haldar S. Response of monopile supported offshore wind turbine in liquefied soil Response of monopile supported offshore wind turbine in liquefied soil 2018.
[12] Yeter B, Tekgoz M, Garbatov Y. Fragility analysis of an ageing monopile offshore wind turbine subjected to simultaneous wind and seismic load 2020.
[13] Nimbalkar SS, Punetha P, Basack S, Mirzababaei M. Piles subjected to torsional cyclic load: Numerical analysis. Front Built Environ 2019;5. https://doi.org/10.3389/fbuil.2019.00024.
[14] Kementzetzidis E, Corciulo S, Versteijlen WG, Pisanò F. Geotechnical aspects of offshore wind turbine dynamics from 3D non-linear soil-structure simulations. Soil Dyn Earthq Eng 2019;120:181–99. https://doi.org/10.1016/j.soildyn.2019.01.037.
[15] Li X, Zeng X, Wang X. Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Eng 2020;204. https://doi.org/10.1016/j.oceaneng.2020.107276.
[16] Kazemi P, Kaynia AM. Earthquake response of monopiles and caissons for Offshore Wind Turbines founded in liquefiable soil. Soil Dyn Earthq Eng 2020;136:106213. https://doi.org/10.1016/j.soildyn.2020.106213.
[17] Shuqing H, Liang T, Xiaoyu Z, Youqing W, Xianzhang L, Bowen X. An investigation of the in fl uence of near-fault ground motion parameters on the pile ’ s response in lique fi able soil 2018;17:729–45.
[18] Shafieezadeh A, DesRoches R, Rix GJ, Werner SD. Three-Dimensional Wharf Response to Far-Field and Impulsive Near-Field Ground Motions in Liquefiable Soils. J Struct Eng 2013;139:1395–407. https://doi.org/10.1061/(asce)st.1943-541x.0000642.
[19] Luo Z, Wu Z, Fu L. Simplified procedure for laterally loaded drilled shafts in spatially random clays. Mar Georesources Geotechnol 2020;38:539–52. https://doi.org/10.1080/1064119X.2019.1601797.
[20] Gholami R. Seismic performance evaluation of jacket type offshore platforms using nonlinear dynamic analysis and considering of the effects of liquefaction in sandy soil layers. Tarbiat Modares Univ 2015.
[21] Khosravifar A, Boulanger RW, Kunnath SK. Effects of liquefaction on inelastic demands on extended pile shafts. Earthq Spectra 2014;30:1749–73.
[22] Zarrin, Mohammad  and behrouz asgarian. Reducing Error of Probabilistic Seismic Demand Analysis of Jacket Type Offshore Platforms Subjected to Pulse-Like Near Fault Ground Motions. J Mar Eng 8 33-49 2013.
[23] Zhang J, Hutchinson TC, Ling X. Demand Evaluation of Pile Shafts Embedded in Liquefiable Soils. Contemp. Top. Situ Testing, Anal. Reliab. Found., ASCE; 2009, p. 222–9.
[24] Prevost JH. A simple plasticity theory for frictional cohesionless soils. Int J Soil Dyn Earthq Eng 1985;4:9–17.
[25] Elgamal A, Yang Z, Parra E. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn Earthq Eng 2002;22:259–71.
[26] Wilson DW. Soil-pile-superstructure interaction in liquefying sand and soft clay 1998.
[27] Beaty MH, Byrne PM. UBCSAND Constitutive Model, Version 904aR. Itasca UDM Web Site 2011:1–69.