مقایسه رفتار شمع های جابجایی-جایگزینی به صورت آزمایشگاهی و میدانی (مطالعه موردی؛ ماسه انزلی)

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری ، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 دانشیار، گروه مهندسی عمران ، دانشگاه پیام نور ،تهران، ایران

3 استاد، دانشکده مهندسی عمران و محیط زیست، دانشگاه صنعتی امیرکبیر، تهران، ایران

4 استادیار، گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

با توجه به توسعه شهرها، بنادر، مراکز تجاری و لزوم بهره گیری حداکثری از زمین های ساحلی و فراساحلی، استفاده از پی های عمیق در انتقال بارهای روسازه به بستر مناسب و یا تأمین ظرفیت باربری به طرق ممکن ناشی از باربری کف و یا جداره امری بدیهی و غیرقابل اجتناب است. در همین راستا استفاده از شمع های کوبشی و درجاریز مرسوم بوده که سروصدا و ارتعاش زیاد ناشی از کوبش و همینطور سختی ها و محدودیت های اجرایی شمع های درجاریز موجب شده است تا گونه جدیدی از شمع ها که با استفاده از نیروی گشتاور و مقدار اندکی نیروی محوری فشاری در خاک نصب می گردند، مورد استفاده قرار بگیرند. شمع پیچشی - پره ای و جابجایی- جایگزینی را می توان از این نوع شمع های نوین دانست. با توجه به افزایش روزافزون استفاده از این شمع ها هنوز مطالعات انجام شده بر روی آنها اندک بوده و نیاز به انجام بررسی های بیشتر بر روی رفتار آنها در خاک ها و شرایط مختلف احساس می شود. از این رو در تحقیق حاضر در دو بخش میدانی و آزمایشگاهی با انجام آزمایش های بارگذاری کششی و فشاری به ارزیابی رفتار این شمع ها پرداخته شده است. سه مدل شمع Helical،Subasa و Drilled displacement pile در بخش آزمایشگاهی در دستگاه فشار همه جانبه مخروطی دانشگاه امیرکبیر اجرا و مورد بارگذاری قرار گرفته و با مطالعات در بخش میدانی مقایسه شده اند. شمع جابجایی- جایگزینی تحقیق در کشش و فشار عملکرد بهتری از بقیه شمع ها داشته و این شمع در هر دو زمینه آزمایشگاهی و شرایط میدانی رفتار سخت تر و ظرفیت بهتری نسبت به دو شمع دیگر اتخاذ کرده است. همچنین گشتاور مورد نیاز این شمع در مقایسه با سایر شمع ها مقادیر بالاتری را داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Comparison of behavior of Drilled Displacement piles in laboratory and field (Case study; Anzali sand)

نویسندگان [English]

  • Saeed Hejazirad 1
  • Soheil Ghareh 2
  • Abolfazl Eslami 3
  • Navid Ganjian 4
1 PhD Candidate, Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Associate Professor, Department of Civil Engineering, Payame Noor University, Tehran, Iran
3 Professor, Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran
4 Assistant professor, Department of civil engineering, science and research branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Deep foundation are used to transfer loads of large and high rise building to subsurface layers that have sufficient strength. Piles are one of the most common deep foundations which are installed in the form of driven an bored for many years, the high noise and variation by the driving and the hardness and the limitations of the performance of the bored piles caused to use a new type of pile which installed to the soil using torque and a small amount of axial compressive load, Helical pile can be considered as such piles. Drilled displacement piles are another type of this piles. Due to the increasing use of these piles, there are still limit studies on them and there is a need to study their behaviour in different soils and conditions. Three models of piles in the laboratory section were implemented and loaded in FCV-AUT and compared with studies in the field. Compressive and tensile static load were performed according to ASTM D1143 and ASTM D3689 standard and rapid loading test.Drilled displacement pile in tensile and compressive performance was better than other torque driven pile. Because of concrete is cheaper than steel, these piles can be a good alternative for driven and bored pile in urban areas.

کلیدواژه‌ها [English]

  • FCV-AUT
  • Drilled Displacement piles
  • Helical piles
  • Static loading
  • Physical modeling
[1] Basu, P., Prezzi, M., and Basu, D.  (2010). Drilled displacement piles: Current practice and design. DFI J., 4(1), 3–20.
[2] Eslami, A., Aflaki, E and Hosseini, B. (2011). Evaluating CPT and CPTu based pile bearing capacity estimation methods using Urmiyeh Lake Causeway pilling records. Scientica Iranica, 18(5): p. 1009-1019.
[3] Eslami, A. Fellenius, B.H. (1997). Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34(6):p.886-904.
[4] Van Impe, W. F., Viggiani, C., Van Impe, P. O., Russo, G., and Bottiau, M. (1998). Load settlement behaviour versus distinctive O-pile execution parameters. Proc., 2nd Int. Geotechnical Seminar Deep Foundation on Bored and Auger Piles–BAP III, A.A. Balkema, Amsterdam, Netherlands, 355–356.
[5] De Beer, E. (1988). Different behavior of bored and driven piles. In: Proceedings of the 1st international geotechnical seminar on deep foundations on bored and auger piles (BAP I), Rotterdam, Balkema, p. S.47–82.
[6] Peiffer, H, Van Impe W. (1993). Evaluation of pile performance based on soil stress measurements – field test program. In: Proceedings of the 2nd international geotechnical seminar on deep foundations on bored and auger piles (BAP II), Rotterdam, Balkema, p. S.385–89.
[7] NeSmith, W. M. (2002). Design and installation of pressure-grouted, drilled displacement piles. Proc., 9th Int. Conf. on Piling and Deep Foundations, Deep Foundations Institute, NJ, 561–567.
[8] Siegel, T. C., NeSmith, W. M., NeSmith, W. M., and Cargill, P. E. (2007). Ground improvement resulting from installation of drilled displacement piles. Proceedings of DFI’s 32nd annual conference on deep foundations, Colorado Springs, U.S.A., pp. 129-138.
[9] Bustamanate, M. and Gianeselli, L.,)1998(. Installation parameters and capacity of screwed piles. Deep Foundations on Bored and Auger Piles, BAP III, Balkema, Rotterdam, pp. 95-108.  
[10] NeSmith, W. M., Member, P.E. (2002). Static capacity analysis of Augered, pressure injected displacement piles: Chief Geotechnical Engineer, Berkel & Company Contractors, Inc., P.O Box 335, Bonner Springs, Kansas 66012, and ASCE.
[11] Meng, Z, Chen, J, Zhang, M. (2015). Field tests to investigate the installation effects of drilled displacement piles with screw shaped shaft in clay. 10.1061/ (ASCE) GT.1943-5606.0001371. American Society of Civil Engineers.
[12] Peiffer, H. (2009). The dmt as tool for the monitoring of the effect of pile installation on the stress state in the soil. In: Proceedings of the 5th international geotechnical Seminar on Deep Foundations on bored and auger Piles (BAP V). Ghent: CRC Press, p. S.135–42.
[13] Sakr, M.,)2011(. Installation and performance characteristics of high capacity helical piles in cohesion less soils. Deep Found. (DFI)5(1),39–57.
[14] Park, S. Roberts, L. (2012). Design methodology for axially loaded auger cast-in-place and drilled displacement piles. DOI: 10.1061/ (ASCE) GT.1943-5606.0000727. American Society of Civil Engineers.
[15] Prezzi, M and Basu, P. (2005). Overview of construction and design of auger cast in place and drilled displacement piles. In DFI’s 30th annual conference on deep foundations. Chicago, U.S.A.
[16] Brown, D. A. (2005). Practical considerations in the selection and use of continuous flight auger and drilled displacement piles. Proc., Geo-Frontiers: Advances in Designing and Testing Deep Foundations, ASCE, Reston, VA, 251–261.
[17] Albuquerque, P., Carvalho, D and Massad, F. (2001). Bored continuous flight auger and omega instrumented piles: Behavior under compression. In the 16th international conference on soil mechanics and geotechnical engineering. Osaka, Japan.
[18] Pirrello, S. (2017).  Design and construction validation of pile performance through high strain dynamic tests for both contiguous flight auger and drilled displacement piles. International Journal of Geotechnical and Geological Engineering, 11(9): p. 759-765.
[19]Tusha, C. D. H, Aoki, N., Rault, G., Thorel, L. and Garnier, J. (2012). Evaluation of the efficiencies of helical anchor plates in sand by centrifuge model tests, Canadian Geotechnical Journal, Vol. 49, No. 9, pp. 1102-1114.
[20] Weech, C. N., Eng. P, and Howie, J. A. (2012). Helical piles in soft sensitive soils- a field study of disturbance effects on pile capacity, VGS Symposium on Soft Ground Engineering.
[21] Moshfeghi, S and Eslami, A. (2018). Reliability based assessment of drilled displacement piles bearing capacity using CPT records. Marine Georesources and Geotechnology, p 1-14.
[22] Basou, P, Prezzi, M and Salgado, R. (2014). Modeling of installation and quantification of shaft resistance of drilled displacement piles in sand. International Journal of Geomechanics, 14(2): p. 214-229.
[23] O’Neil, M. (1994). Review of augered pile practice outside the United States. Journal of the Transportation Research Board, 1994. 1447: p. 3-9.
[24] Larisch, M. (2014). Behavior of stiff fine grained soil during the installation of screw auger displacement piles. The University of Queensland.
[25]Gwizdala, K, Pajak, M, (2008). Influence of installation of piles with partial and full displacement of the soil on the subsoil strength. Architecture Civil Engineering Enviroment, 1:p. 43-50.
[26]Zare, M. Eslami, A. (2014). Study of deep foundation performances by frustum confining vessel (FCV). International Journal of Civil Engineering, Vol. 12, No. 4, Transaction B: Geotechnical Engineering.
[27] Zarrabi, M. Eslami, A. (2016). Behavior of Piles under Different Installation Effects by Physical Modeling. Int. J. Geomech., 04016014.ASCE.
[28] Askari Fateh, A.M. Eslami, A. Fahimifar, A. (2016). Study of soil disturbance effect on bearing capacity of helical pile by experimental modelling in FCV. International Journal of Geotechnical Engineering.
[29] Livneh, B. and El Naggar, M.H. (2008), axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Canadian Geotechnical Journal, 45(8): p.1142-1155.