مطالعه آزمایشگاهی تأثیر نانو ذرات گرافن‌اکساید بر روی رفتار مکانیکی کامپوزیت‌های سیمانی و مشخصه‌‌های انتقال آب در بتن

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکاه بین المللی امام خمینی قزوین ایران

2 استاد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

در این مطالعه، یک برنامه آزمایشگاهی به منظور بررسی تأثیر گرافن‌اکساید (GO) بر روی رفتار مکانیکی ماتریس‌های سیمانی و همچنین نفوذپذیری بتن تدوین شده است. نانو ذرات گرافن به دلیل مساحت سطح بالا و دانسیته پایین در کمترین مقدار می‌توانند تأثیر چشمگیری در خواص بتن داشته باشند. این نانو صفحات ساختار صفحه‌ای دارند که هیدروفوب است و آب به دلیل تمایل نداشتن به سطح گرافن در آن جاری نمی‌شود. با عاملدار کردن این نانوذره می‌توان خواص آبگریزی را به خواص آبدوستی تبدیل کرد. در این پژوهش نمونه‌های ملات سیمان 28 روزه با درصدهای متفاوت گرافن‌اکساید (از 0 % تا 2/0 % وزنی سیمان (bwoc)) تحت آزمایش‌های کشش، فشار و خمش، نمونه‌های خمیره سیمان 28 روزه با درصد‌های گرافن‌اکساید bwoc (05/0-0) % تحت آزمایش‌های کشش و فشار، نمونه‌های بتن 28 و 90روزه با درصد‌های گرافن‌اکساید bwoc (2/0-0) % تحت آزمایش فشار و نمونه‌های 28 روزه بتن با درصد‌های گرافن‌اکساید bwoc (2/0-0) % تحت آزمایش نفوذپذیری با استفاده از دستگاه "محفظه استوانه‌ای" قرار گرفتند. مطالعات نشان می‌دهد که گرافن‌اکساید باعث بهبود رفتار کششی، خمشی و فشاری ملات سیمان می‌شود به‌طوری‌که افزایش در مقاومت‌های خمشی و کششی بیش‌تر از مقاومت فشاری است. در نمونه‌های ملات مسلح با bwoc05/0 % گرافن‌اکساید افزایش در مقاومت کششی 70 % و در مقاومت خمشی 22 % مشاهده شد. نمونه‌های خمیره سیمان با bwoc03/0 % گرافن‌اکساید هم افزایش 43 % در مقاومت فشاری و 52 % در مقاومت کششی را نشان دادند. همچنین اندازه‌گیری مقاومت فشاری بتن نشان داد با افزودن bwoc 1/0 % گرافن‌اکساید به بتن، مقاومت فشاری 28روزه تا 25 % و 90روزه تا 50 % افزایش می‌یابد. نتایج آزمایش نفوذپذیری نشان می‌دهد که افزودن گرافن‌اکساید به بتن می‌تواند به طور مؤثری از نفوذ بیشتر آب به داخل بتن جلوگیری کرده و باعث بهبود دوام بتن شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental investigation on mechanical and water transport properties of cement composites containing graphene oxide

نویسندگان [English]

  • mahna safarkhani 1
  • Mahmood Naderi 2
1 Ph.D. Student in Structural Engineering, Department of Civil Engineering, Engineering Faculty, International Imam Khomeini University, Qazvin, Iran
2 Professor, Department of Civil Engineering, Engineering Faculty, International Imam Khomeini University, Qazvin, Iran
چکیده [English]

Recent investigations show that graphene oxide nanoparticles (GO) are promising nano-sized additives to enhance the mechanical property of cementitious materials. GO are the product of chemical exfoliation of graphite and contain a range of reactive oxygen functional groups that enable it as a suitable candidate for reaction in cementitious materials through physical functionalization. In this paper, the experimental program is performed to study the mechanical and water transport properties of GO-reinforced cement composites. Experimental results show, adding GO improved the tensile, flexural, and compressive strengths of mortar with the increase in flexural and tensile strength more than that of compressive strength. Especially, the tensile and flexural strength, when the content of GO was 0.05% bwoc, the cement mortar exhibited remarkable increase by 70% and 22% respectively, comparing with those without GO. Particularly, the compressive strength of concrete incorporating 0.1% by weight of cement GO increased by 25% and 50% than those of concrete without GO after curing for 28 days and 90 days respectively. The strengths enhancement can be attributed to the promotion of hydration and the finer pore structure of cement paste incorporating GO. There are thresholds for all mechanical strengths of cement mortar incorporating GO where the GO content exceeds the threshold, the decrease in strength is observed which can be attributed to the deformation of the hydration crystals by the change in the dosage of GO in the matrix. Penetration test results indicate that the incorporation of a very low fraction of GONPs can effectively hinder the ingress of water molecules. It can be concluded that adding GONPs improve the transport properties of concrete which subsequently improves its durability.

کلیدواژه‌ها [English]

  • Graphene oxide
  • Nano particles
  • Mechanical properties
  • Concrete
  • Mortar
  • Penetration
[1] Yuan, Yingshu, and Yongsheng Ji. "Modeling corroded section configuration of steel bar in concrete structure." Construction and Building          Materials 23.6 (2009): 2461-2466.
[2] Watanabe, Ken, Toshihide Kimura, and Junichiro Niwa. "Synergetic effect of steel fibers and shear-reinforcing bars on the shear-resistance mechanisms of RC linear members." Construction and Building Materials 24.12 (2010): 2369-2375.
[3] Hossain, Md Zakaria, and ASM Abdul Awal. "Flexural response of hybrid carbon fiber thin cement composites." Construction and Building Materials 25.2 (2011): 670-677.
[4] Ali, Majid, et al. "Mechanical and dynamic properties of coconut fibre reinforced concrete." Construction and Building Materials 30 (2012): 814-825.
[5] Reis, J. M. L. "Fracture and flexural characterization of natural fiber-reinforced polymer concrete." Construction and building materials 20.9 (2006): 673-678.
[6] Soroushian, Parviz, Atef Tlili, and Ataullah Khan. "Development and characterization of hybrid polyethylene fiber reinforced cement composites." Materials Journal 90.2 (1993): 182-190.
[7] Soroushian, Parviz, Jong-Pil Won, and Maan Hassan. "Durability characteristics of CO2-cured cellulose fiber reinforced cement composites." Construction and Building Materials 34 (2012): 44-53.
[8] Su, Haoyang, and Jinyu Xu. "Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load." Construction and Building Materials 45 (2013): 306-313.
[9] Morova, Nihat. "Investigation of usability of basalt fibers in hot mix asphalt concrete." Construction and Building Materials 47 (2013): 175-180.
[10] Zollo, Ronald F. "Fiber-reinforced concrete: an overview after 30 years of development." Cement and concrete composites 19.2 (1997): 107-122.
[11] Zhu, Yanwu, et al. "Graphene and graphene oxide: synthesis, properties, and applications." Advanced materials 22.35 (2010): 3906-3924.
[12] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Graphene-based composite materials, Nature, Vol. 442, No. 7100, pp. 282-286.2006.
[13] C. Androulidakis, G. Tsoukleri, N. Koutroumanis, G. Gkikas, P. Pappas, J. Parthenios, K. Papagelis, C. Galiotis, Experimentally derived axial stress–strain relations for two-dimensional materials such as monolayer graphene, Carbon, Vol. 81, No. 1, pp. 322-328, 2015.
[14] A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nature materials, Vol. 10, No. 8, pp. 569, 2011.
[15] R. Nazemnezhad, H. Shokrollahi, S. Hosseini-Hashemi, Sandwich beam model for free vibration analysis of bilayer grapheme nanoribbons with interlayer shear effect, Journal of Applied Physics, Vol. 115, No. 17, pp. 174303, 2014.
[16] S. Sadeghzadeh, L. Liu, Resistance and rupture analysis of singleand few-layer graphene nanosheets impacted by various projectiles, Superlattices and Microstructures, Vol. 97, No. 1, pp. 617-629, 2016.
[17] S. Sadeghzadeh, M. Khatibi, Modal identification of single layer graphene nano sheets from ambient responses using frequency domain decomposition, European Journal of Mechanics-A/Solids, Vol. 65, No. 1, pp. 70-78, 2017.
[18] A. Korayem ,N. Tourani, M. Zakertabrizi, A. Sabziparvar, W. Duan, A review of dispersion of nanoparticles in cementitious matrices: Nanoparticle geometry perspective, Construction and Building Materials, Vol. 153, No. 1, pp. 346-357, 2017.
[19] Z. Pan, L. He, L. Qiu, A. H. Korayem, G. Li, J. W. Zhu, F. Collins, D. Li, W. H. Duan, M. C. Wang ,Mechanical properties and microstructure of a graphene oxide–cement composite, Cement and Concrete Composites, Vol. 58, No. 1, pp. 140-147, 2015.
[20] E. Horszczaruk, E. Mijowska, R. J. Kalenczuk, M. Aleksandrzak, S. Mijowska, Nanocomposite of cement/graphene oxide–Impact on hydration kinetics and Young’s modulus, Construction and Building Materials, Vol. 78, No. 1, pp. 234-242, 2015.
[21] Z. Lu, D. Hou, L. Meng, G. Sun, C. Lu, Z. Li, Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechanical properties, RSC Advances,Vol. 5, No. 122, pp. 100598-100605, 2015.
[22] Lv, Shenghua, et al. "Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites." Construction and building materials 49 (2013): 121-127.
[23] BS EN 1008, British standard for mixing water for concrete. Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete, British Standard Institution, London (2002).
[24] Saez de Ibarra, Y., et al. "Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions." Physica Status solidi (a) 203.6 (2006): 1076-1081.
[25] Han, B. G., X. C. Guan, and J. P. Ou. "Application of ultrasound for preparation of carbon fiber cement-based composites." Mater. Sci. Technol 17.3 (2009): 368-372.
[26] ASTM C31/C31M-15ae1, Standard Practice for Making and Curing Concrete Test Specimens in the Field, ASTM International, West Conshohocken, PA, 2015.
[27] Li, Wengui, et al. "Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste." Construction and Building Materials 136 (2017): 506-514.
[28] Mohammed, A., et al. "Incorporating graphene oxide in cement composites: A study of transport properties." Construction and Building Materials 84 (2015): 341-347.
[29] Hou, Dongshuai, and Zongjin Li. "Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: case study of jennite." Journal of materials in civil engineering 5/26 (2014): 930-940.
[30] Neville, Adam M. Properties of concrete. 5th ed. England: Pearson Education Limited; 2011.
[31] M. Naderi, Registration of Patent in Companies and industrial property Office,“Determination of concrete, stone, mortar, brick and other construction materials permeability with cylindrical chamber method.”, in, Reg, 2010.
[32] M. Naderi, A. Kaboudan, Cylindrical Chamber: A New In Situ Method for Measuring Permeability of Concrete with and without Admixtures, Journal of Testing and Evaluation, 48(3) (2020).
[33] Li, Xiangyu, et al. "Effects of graphene oxide agglomerates on workability, hydration, microstructure and compressive strength of cement paste." Construction and Building Materials 145 (2017): 402-410.
[34] Long, Wu-Jian, et al. "Dynamic mechanical properties and microstructure of graphene oxide nanosheets reinforced cement composites." Nanomaterials 7.12 (2017): 407.