بررسی تاثیر الیاف پلی پروپیلن بر جمع شدگی، رفتار فشاری و مقاومت چسبندگی برشی و کششی ملات های تعمیری بر بستر بتنی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه عمران، دانشکده فنی و مهندسی، دانشگاه آزاد واحد قیام دشت، تهرن، ایران

2 استاد، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

پدیده خشک شدن ملات و به دنبال آن به وجود آمدن جمع شدگی از دلایل اصلی در کاهش مقاومت چسبندگی بین ملات های تعمیری و بستر بتنی می باشد. یکی از راه کارهای کاهش جمع شدگی، استفاده از الیاف داخل ملات می باشد. لذا در این مقاله جهت بهبود چسبندگی بین ملات تعمیری و بستر بتنی از الیاف پلی پروپیلن در مخلوط ملات استفاده گردیده و بدین منظور مقدار جمع شدگی حاصل از خشک شدن ملات ها کنترل گردیده است. برای تعیین مقدار مقاومت چسبندگی بین ملات تعمیری و بستر بتنی از روش های "انتقال اصطکاک" و "کشیدن از سطح" استفاده شده است. همچنین علاوه بر تعیین مقدار جمع شدگی و مقاومت چسبندگی، مقدار مقاومت فشاری ملات های حاوی الیاف با به کارگیری روش های فوق و با مدل سازی اجزا محدود با نرم افزار ABAQUS مورد بررسی قرار گرفته و نحوه شروع و توزیع ترک ها و تنش ها نشان داده شده است. برای ارزیابی مقاومت فشاری درجای ملات های مسلح به الیاف پلی پروپیلن، با استفاده از تحلیل رگرسیون خطی و توانی، همبستگی بین قرائت های به دست آمده از روش های نیمه مخرب "انتقال اصطکاک" و "کشیدن از سطح" با آزمون های آزمایشگاهی تعیین گردید. سپس با استفاده از نمودارهای کالیبراسیون، معادلات مورد نیاز جهت تبدیل نتایج آزمون های درجا به مقاومت فشاری ملات های مسلح به الیاف پلی پروپیلن ارائه شدند. نتایج به دست آمده نشان دهنده تاثیر مثبت الیاف بر جمع شدگی، مقاومت چسبندگی برشی و کششی و مقاومت فشاری ملات ها می باشد. همچنین شدت همبستگی به دست آمده از روش های "انتقال اصطکاک" و "کشیدن از سطح" بیانگر رابطه قوی خطی بین این دو روش می باشد که در نتیجه می توان به جای استفاده از دستگاه گران قیمت Pull-off از دستگاه ساده و ارزان "انتقال اصطکاک" استفاده نمود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analyzing the Effect of Polypropylene Fibers on Compressive Behavior, Shrinkage and Bond Strength of Repair Mortars/Concrete Substrate

نویسندگان [English]

  • Ali Saberi Vaezaneh 1
  • Mahmood Naderi 2
1 Department of Civil Engineering, Faculty of Engineering, Azad University, Ghiamdasht, Tehran, Iran
2 Professor, Department of Civil Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

The dry shrinkage of mortars is one of the primary causes for the reduction of bond strength between repair mortars and concrete substrates. Utilizing fibers in the mortars is one of the methods used to reduce shrinkage. The current study used polypropylene fibers in mortars to improve the bond between repair mortar and concrete substrate, and also to control the dry shrinkage of mortars. The “friction-transfer” and "pull-off” methods were used to determine the bond strength between the repair mortar and concrete substrate. In addition to determining the amount of shrinkage and bond strength, the amount of compressive strength of fiber reinforced mortar by using the above methods and by modeling finite element with ABAQUS software has been investigated. In addition, the methods of initiation and distribution of cracks and stresses were shown. In order to assess the in-situ compressive strength of polypropylene fiber-reinforced mortars, the correlation of records obtained from semi-destructive methods of “friction-transfer” and “pull-off” with those of laboratory tests was determined, using the linear and exponential regression analyses. Then, using calibration curves, the equations required to convert the results of in situ methods to the compressive strength of polypropylene fiber-reinforced mortars were presented. The results demonstrate the positive effect of fibers on shrinkage, shear and tensile bond strength and compressive strength of mortars. The correlation coefficients of the “friction-transfer” and “pull-off” methods are indicative of a strong linear relationship between the two methods that instead of using an expensive “pull-off” device, a simple and inexpensive "friction-transfer" device can be used.

کلیدواژه‌ها [English]

  • Fiber
  • Bond Strength
  • .Shrinkage
  • In-situ Methods
  • Finite Element Method
[1] Tilly, G.P. Jacobs, J. (2007). “Concrete repairs: Observations on performance in service and current practice”. Watford, UK,.
[2] Wu, D. Gao, W. Feng, J. Luo, K. (2016). Structural behaviour evolution of composite steel-concrete curved structure with uncertain creep and shrinkage effects, Composites Part B: Engineering, 86, 261-272.
[3] Martinola, G. Sadouki, H. Wittmann, F. (2001). “Numerical model for minimizing the risk of damage in a repair system”, J. Mater. Civ. Eng, 13, 121–129.
[4] Beushausen, H. Alexander, M. (2007). “Localised strain and stress in bonded concrete overlays subjected to differential shrinkage”, Mater. Struct, 40, 189–199.
[5] Fanf, L. Peiming, W. Xiaojie, Y. (2005). Effect of polypropylene fiber on dry shrinkage ratio of cement mortar. Journal of Building Materials. Vol. 8-4, pp. 373-377.
[6] Bakhtiari, A., Sharifzadeh, M., and Kazemi, A. (2014). Examination of concrete microstructure containing polypropylene and quartz fibers by scanning electron microscopy. 2nd International Congress on Structure, Architecture and Urban Development, 16-18 December, Tabriz, Iran.
[7] Mohamedm R.A.S. (2006). Effect of polypropylene fibers on the mechanical properties of normal concrete. Journal of Engineering Sciences, Assiut University, Vol. 34, pp. 1049-1059.
[8] Vairagade, V.S. Kene, K.S. (2012). Deshpande. Investigation on compressive and tensile behavior of fibrillated polypropylene fibers reinforced concrete. Vol. 2-3, pp. 1111-1115.
[9] Dharan, D.S. Lai, A. (2016). Study the effect of polypropylene fiber in concrete. International Research Journal of Engineering and Technology, Vol. 03 – 06, pp. 616-619.
[10] Building and Housing Research Center. (2008) The National Method for Concrete Mix Design, BHRC Publication No.S-479.
[11] Santandrea, M., Imohamed, I. A. O., Jahangir, H., Carloni, C., Mazzotti, C., De Miranda, S., ... & Casadei, P. (2016). An investigation of the debonding mechanism in steel FRP-and FRCM-concrete joints. In 4th Workshop on the new boundaries of structural concrete (pp. 289-298).
[12] Bagheri, M., Chahkandi, A., & Jahangir, H. (2019). Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers. International Journal of Civil Engineering, 17(11), 1785-1797.
[13] Jahangir, H., & Esfahani, M. R. (2020). Investigating loading rate and fibre densities influence on SRG-concrete bond behaviour. Steel and Composite Structures, 34(6), 877-889.
[14] Jafarinejad, S., Rabiee, A., and Shekarchi, M. (2019). Experimental investigation on the bond strength between Ultra high strength Fiber Reinforced Cementitious Mortar & conventional concrete. Construction and Building Materials, Vol 220, 116814.
[15] Ebead, U., and Younis, A. (2019). Pull-off characterization of FRCM/Concrete interface. Composite Part B, Vol 165, pp. 545-553.
[16] Sabah, S.H., Hassan, M.H., Bunnori, N., and Johari, M.A. (2019). Bond strength of the interface between normal concrete substrate and GUSMRC repair material overlay. Construction and Building Materials, Vol. 216, pp. 261-271.
[17] Naderi, M (2009) Analysis of the slant shear test, Journal of Adhesion Science and Technology, 23(2), 229-245.
[18] ASTM C1583, (2004).Standard test method for tensile strength of concrete surfaces and the bond strength or tensile strength of concrete repair and overlay materials by direct tension (pull-off method), West Conshohocken PA, American Society for Testing and Materials.
[19] Naderi, M. (2008). “Adhesion of different concrete repair systems exposed to different environments,” J. Adhes., vol. 84, no. 1, pp. 78–104.
[20] Naderi. M., Shibani. R. (2013) New Method for Nondestructive Evaluation of Concrete Strength. Australian Journal of Basic Applied Sciences. 7(2). p. 438-447.
[21] Naderi, M. (2005). “Friction-Transfer Test for the Assessment of in-situ Strength & Adhesion of Cementitious Materials”, Construction & Building Materials, 19 (6) 454-459.
[22] Naderi, M. (2011). An alternative method for in situ determination of rock strength, Can. Geotech. J. 48: 1901-1905.
[23] Naderi, M. (2006). Evaluating in situ shear strength of bituminous pavments, Proceedings of the institution of Civil Engineering, pp 61-65.
[24] Naderi, M. Ghodousian, O. (2012). Adhesion of Self-Compacting Overlays Applied to Different Concrete Substrates and Its Prediction by Fuzzy Logic, The Journal of Adhesion, 88:10, 848-865.
[25] Naderi, M. (2008). Effects of Cyclic Loading, Freeze-Thaw and Temperature Changes on Shear Bond Strengths of Different Concrete Repair Systems, The Journal of Adhesion, 84:9, 743-763.
[26] ASTM C136-01. (2001). “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates”, American Society for Testing and Materials.
[27] ASTM C128. (2015). Standard test method for relative density (specific gravity) and absorption of coarse aggregate, West Conshohocken PA, American Society for Testing and Materials.
[28] ASTM C127. (2012). Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, West Conshohocken PA, American Society for Testing and Materials.
[29] ACI 544.1R-98. Reapproved (2002). Report on fiber reinforced concrete, Reported by ACI Committee 544, American Concrete Institute.
[30] C. ASTM C157. (2008). Test method for length change of hardened hydraulic cement mortar and concrete, West Conshohocken PA, American Society for Testing and Materials.
[31] ASTM C490. (2011). Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete, West Conshohocken PA, American Society for Testing and Materials.
[32] ASTM C109. (2013). Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens), American Society for Testing and Materials.
[33] Alnkaa, A. Yaprak, H. MEMİŞ, S. and Kaplan, G. (2018). “Effect of Different Cure Conditions on the Shrinkage of Geopolymer Mortar.” International Journal Of Engineering Research And Development, vol. 14, no 10, pp. 51-55.
[34] Silfwerbrand, J. (2003). “Shear bond strength in repaired concrete structures”, Materials and Structures, 36, 419-424.
[35] Chendes, R. Dan, S. and Courard, L. (2013) “Comparison of shear and pull-off tests for testing adhesion of different content limestone fillers mortars used as repair system,” Constr. Sustain. Effic. Solut. Des. Exec. Rehabil. Build.