اثر شعاع انحنا بر ارزیابی احتمالاتی لرزه ای پل های قوسی عرشه باکس بتن آرمه با استفاده از شبیه سازی مونت کارلو تحت تحریکات سه جهته زلزله های نزدیک گسل

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشجوی دکترا عمران سازه دانشگاه صنعتی نوشیروانی بابل

2 دانشیار، دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران

3 استادیار، دانشگاه صنعتی شاهرود، شاهرود، ایران

4 استاد، دانشگاه علم و صنعت، تهران، ایران

چکیده

همواره آسیب پذیری پل‌های قوسی با توجه به شرایط هندسی خاص و رفتار متفاوتی که نسبت به پل های مستقیم در جریان زلزله از خود نشان دادند، از اهمیت ویژه ای برخوردارند. لذا در این مقاله به بررسی تاثیر شعاع انحناهای مختلف بر احتمال آسیب پذیری لرزه ای پل های قوسی چندقابی عرشه باکس بتن آرمه و مقایسه آن با پل مستقیم پرداخته شد. میزان آسیب پذیری پلهای قوسی به صورت سه بعدی تحت تحریکات چندگانه (با در نظر گیری مولفه قائم زلزله ) رکوردهای نزدیک گسل مورد ارزیابی قرار گرفت. مدلهای پل در 5 شعاع مختلف تحت 80 رکورد زلزله با در نظر گیری کلیه عدم قطعت‌های تقاضا ( 14 عدم قطعیت ذاتی پل به همراه عدم قطعیت زلزله) و همچنین عدم قطعیت های ظرفیت، تحلیل دنیامیکی غیرخطی گردید. با استفاده از تکنیک لاتین هایپرکیوب از میان تمام پلهای این کلاس، 10 هندسی کاملا تصادفی که نماینده وضعیت هندسی کل جمعیت آماری پلهای عرشه باکس بتن آرمه کالیفرنیا است، برای هر شعاع پل انتخاب گردید. در انتها با انجام تحلیل های دینامیکی غیرخطی، منحنی شکنندگی مولفه های مختلف پل ترسیم گردید و اثر انحنا پل بر آسیب پذیری اجزای مختلف پل مورد بررسی قرار گرفت. سپس با مقایسه تقاضا با ظرفیت اجزای مختلف پل، با استفاده از شبیه سازی مونت کارلو، احتمال خسارت لرزه ای کل سیستم پل تخمین زده شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of curvature radius on probabilistic evaluation of seismic horizontally Curves RC Box girder bridges using Monte Carlo simulation under three-dimensional excitations under Near-Field Earthquakes

نویسندگان [English]

  • Ali Naseri 1
  • Alireza Mirza Goltabar Roshan 2
  • Hossein Pahlavan 3
  • Gholamreza Ghodrati Amiri 4
1 Ph.D. Candidate of Structural Engineering, Babol Noshirvani University of Technology, Iran.
2 Associate Professor, Faculty of Civil Engineering, Noshirvani University of ‎Technology, Babol, Iran
3 Assistant Professor, Faculty of Civil Engineering, Shahrood University of Technology, Iran
4 Professor, Department of Civil Engineering, Iran University of Science & Technology, Tehran, Iran
چکیده [English]

Curved bridges exhibit complicated responses in the course of an earthquake, due to their distinctive geometric status. Thereby in this study, the effect of different curvature radii on the seismic damage probability of curved multi-frame concrete box-girder bridges was investigated and compared to straight bridge. Three-dimensional probabilistic seismic vulnerability of the curved multi-frame concrete box-girder bridges was delved in the near-fault events subjected to three-directional ground motion excitations (considering vertical component of earthquake). Bridge models were analyzed in 5 different radii subjected to 80 near-fault earthquake records and taking into account all demand uncertainties (14 uncertainties inherent of bridge, along with the earthquake uncertainty) as well as capacity uncertainties. Of all the bridges of this class, a total of 10 completely random geometries, representing geometric status of entire statistical population of curved box-girder bridges in California, were selected for each of the six bridge radii using the Latin-Hypercube Sampling technique. Having performed nonlinear dynamic analyses, the fragility curve of each bridge component was plotted, and the curvature effect on the vulnerability of various bridge components was investigated . Thereby, comparing seismic demand with the capacity of components through Monte Carlo simulation strategy, damage probability of the bridge system was estimated.

کلیدواژه‌ها [English]

  • RC Box girder bridges
  • Effect of curvature radius
  • probabilistic seismic evaluation
  • Monte Carlo
  • Near field
[1] Nielson, B., “Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones,” PhD thesis, Georgia Institute of Technology, (2005).
[2] Padgett J.E. “Seismic vulnerability assessment of retrofitted bridges using probabilistic methods.” Ph.D. thesis, Georgia Institute of Technology, Atlanta, (2007).
[3] Ramanathan, K., DesRoches, R., & Padgett, J. E., “A comparison of pre-and post-seismic design considerations in moderate seismic zones through the fragility assessment of multispan bridge classes”. Engineering Structures, 45, 559-573, (2012).
[4] Zakeri.B, “Seismmic Vulnerability Assessment of Retrofitted Skewed Concrete Bridges Using Probabilis-tic Methods”, PhD thesis, Iran University of Science and Technology School of Civil Engineering, (2013).
[5] Mirza Goltabar Roshan, A., Naseri, A., Mahmoodi Pati, Y., “Probabilistic evaluation of seismic vulnerability of multi-span ‎bridges in north of Iran”, Journal of Structural and Construction Engineering, 5(1), pp. 36-54. doi: 10.22065/jsce.2017.68948.1009, (2018).
[6] Nielson B.G. and DesRoches R. “Analytical seismic fragility curves for typical bridges in the Central and Southeastern United States.” Journal of Earthquake Spec-tra, 23(3), 615-633, (2007).
[7] Mohseni, M., & Norton, T. R., “Seismic damage assessment of curved bridges using fragility analysis.” Proceeding of 11th International Conference on Applications of Statistics and Probability in Civil Engineering-ICASP11, Zurich, Switzerland.
[8] Seo J., Linzell D.G. (2012). “Horizontally curved steel bridge seismic vulnerability assessment.” Journal of Engineering Structures, 34, 21-32, (2011).
[9] Yang, H., & Yin, X., “Transient responses of girder bridges with vertical poundings under near‐fault vertical earthquake. Earthquake Engineering & Structural Dynamics”, 44(15), 2637-2657, (2015)..
[10] Pahlavan, H., Zakeri, B., Amiri, G. G., & Shaianfar, M, “Probabilistic vulnerability assessment of horizon-tally curved multiframe RC box-girder highway bridges”. Journal of Performance of Constructed Facilities, 30(3), 04015038, (2015).
[11] HAZUS-MH [Computer software]. Washington, DC, Federal Emergency Management Agency.
[12] Bruce A. Bolt., “Seismic input motions for nonlinear structural analysis”, Journal of Earthquake Technology, Paper No.448, (2004).
[13] K.Galal, A.Ghobarah, “Effect of near-fault earthquakes on North American nuclear design spectra”, Nuclear Engineering and Design, Elsevier, (2006).
[14] Jonathan P. Stewart, Shyh-Jeng Chiou, Jonathan D. Bray, Robert W. Graves, Paul G. Somerville, and Norman A. Abrahamson," “Ground Motion Evaluation Procedures for Performance-Based Design”, A report on research conducted under grant no. EEC-9701568 from the National Science Foundation, PEER, September, (2001).
[15] Farzad Naeim, “THE SEISMIC DESIGN HANDBOOK, 2nd Edition”, Published by Kluwer Academic Publishers, (2001).
[16] Pahlavan, H., Naseri, A., Rafiei, S., Baghery, H., 'Seismic Vulnerability Assessment of Horizontally Curved Multi frame RC BoxGirder Bridges Considering the Effect of Column Heights and Span Numbers', Amirkabir Journal of Civil Engineering, 50(3), pp. 529-542. doi: 10.22060/ceej.2017.12135.5130, (2018).
[17] Aviram A., Mackie K. and Stojadinovic B., “Guidelines for Nonlinear Analysis ‎of Bridge Structures in‏ ‏‎California”, ‎Technical Report, Pacific Earthquake ‎Engineering Research Center, University of ‎‏ ‏California‏, ‏‎Berkeley‏, ‎‎(2008).‏‎‏ ‏
[18] Shamsabadi, A‏., & ‏Yan, L., “Closed-‎form force-displacement backbone curves ‎for bridge abutment-backfill systems”, In ‎Geotechnical Earthquake Engineering and ‎Soil Dynamics IV pp. 1-10, (2008).‏
[19] Choi, E., “Seismic analysis and retrofit of mid-America bridges.” Ph.D. thesis, Georgia Institute of Technology, Atlanta, (2002).
‎[20]‎ Scharge, L., “Anchoring of Bearings by Friction, Joint Sealing and Bearing Systems for Concrete Structures”, World Congress on Joints and Bearings, Vol. 1, American Concrete Institute, Niagara Falls, NY, (1981).
‎[21]‎ Megally S.H, Silva P.F. and Seible F., “Seismic response of sacrificial shear keys in bridge abutments”, Report No. SSRP-200l/23, Department of Structural Engineering, University of California, San Diego, (2001).
[22] Muthukumar, S., & DesRoches, R., “A Hertz contact model with non‐linear damping for pounding simulation”. Earthquake engineering & structural dynamics, 35(7), pp. 811-828, (2006).
[23] Chang, G., & Mander, J. B., “Seismic energy based fatigue damage analysis of bridge columns: part 1-evaluation of seismic capacity”, (1994).
[24]. Menegotto, M., “Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending”. In Proc. of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads (pp. 15-22), (1973).
[25] Ellingwood, B., & Hwang, H., “Probabilistic descriptions of resistance of safety-related structures in nuclear plants. ” Nuclear Engineering and Design, 88(2), pp. 169-178, (1985).
[26] Mander, J. B., Kim, D. K., Chen, S. S., and Premus, G. J., “Response of steel bridge bearings to the reversed cyclic loading”. Rep. No. NCEER 96-0014, NCEER, (1996).
[27] Dutta, A., “Energy based seismic analysis and design of highway bridges”, Ph.D. thesis, State Univ. of New York, Buffalo, (1999).
[28] CALTRANS., “Reinforced concrete bridge capacity assessment training manual”, Structure Maintenance and Investigations Rep., Sacramento, CA, (2007).
[29] Fang, J., Li, Q., Jeary, A., & Liu, D., “Damping of tall buildings: Its evaluation and probabilistic characteristics”. The Structural Design of Tall Buildings, 8(2), pp. 145-153, (1999).
[30] Bavirisetty, R., Vinayagamoorthy, M., and Duan, L., “Dynamic analysis”., Bridge engineering handbook. W.-F. Chen and L. Duan, eds., CRC Press, Boca Raton, FL, (2000).
[31] Ayyub, B. M., & Lai, K. L., “Structural reliability assessment using latin hypercube sampling”., In Structural Safety and Reliability (pp. 1177-1184). ASCE, (1989).
[32] NBI (National Bridge Inventory), “National Bridge inventory data.”, U.S. Dept. of Transportation, Federal Highway Administration, Washington, DC, (2010).
[33] Zakeri, B., Padgett, J. E., & Ghodrati Amiri, G., “Fragility assessment for seismically retrofitted skewed reinforced concrete box girder bridges. ”, Journal of Performance of Constructed Facilities, 29(2), p 04014043, (2015).
[34] Nielson, B. G., & Mackie, K. R., “Tracking uncertainties from component level to system level fragility analyses through simulation.”, In Proc., 10th Technical Council on Lifeline Earthquake Engineering (TCLEE) Int. Conf. on Structural Safety and Reliability. Reston, VA: ASCE, (2009).
[35] Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N. (2011). New ground motion selection procedures and selected motions for the PEER transportation research program. Pacific Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, CA, PEER Report (2011/3).
[36] Nielson, B. G., and DesRoches, R., “Analytical seismic fragility curves for typical bridges in the central and southeastern United States. ”, Earthquake Spectra, 23(3), 615–633, (2007a).
[37] Nielson, B. G., and DesRoches, R., “Seismic fragility methodology for highway bridges using a component level approach.”, Earthquake engineering & structural dynamics, 36(6), 823–839, (2007b).
[38] Cornell, C. A., Jalayer, F., Hamburger, R. O., & Foutch, D. A., “Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines.” Journal of structural engineering, 128(4), pp. 526-533, (2002).
[39] Ranganathan, R. “Reliability analysis and design of structures”. Tata McGraw-Hill, (1990).
[40] Omranian, E., Abdelnaby, A. E., & Abdollahzadeh, G. “Seismic vulnerability assessment of RC skew bridges subjected to mainshock-aftershock sequences”. Soil Dynamics and Earthquake Engineering, 114, 186-197 (2018).
[41] Fung, G., LeBeau, R., Klein, E., Belvedere, J., & Goldschmidt, A., “Field investigation of bridge damage in the San Fernando earthquake.”, Bridge Department, Division of Highways, California Department of Transportation, Sacramento, California. Preliminary Report, (1971).