بررسی عددی سه بعدی عملکرد لرزه ای اتصال خمشی با استفاده از ورق در صفحه ی جان ستون

نوع مقاله : علمی - پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

2 گروه مهندسی عمران، دنشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد نور، نور، ایران

3 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد سالامی واحد نور، نور، ایران

4 دانشکده فنی و مهندسی، دانشگاه دامغان، ایران

چکیده

اکثر اتصالات خمشی تا به امروز با رعایت ضابطه‌ی تیر ضعیف-ستون قوی طراحی می‌شوند که این امر موجب تحمیل شدن هزینه‌های اجرایی و مصالح و جوش‌های نفوذی در محل پروژه می‌شود. از این‌رو در راستای برطرف نمودن این موارد، اتصال خمشی نسبتا جدیدی که تنها با اتصال یک ورق در راستای صفحه‌ی جان تیر و ستون، این دو عضو را به یکدیگر متصل می‌نماید، در قالب مطالعات پارامتریک بررسی می‌شوند. معیار طراحی ورق اتصال به گونه‌ای بود که ظرفیت خمشی پلاستیک آن کمتر از ظرفیت خمشی تسلیم تیر باشد تا بدین ترتیب ورق اتصال همانند میراگر تسلیمی عمل کند و سایر المان‌ها در ناحیه‌ی الاستیک باقی بمانند. پارامترهایی از قبیل ضخامت، ارتفاع، شیب و جنس ورق در تحلیل‌های استاتیکی غیرخطی و ساخت 12 مدل‌ عددی المان محدود در برنامه‌ی آباکوس تحت بارگذاری چرخه‌ای در نظر گرفته شدند. در ابتدا مدل عددی با نمونه‌ی آزمایشگاهی مقایسه شد و رفتار دو نمونه از جنبه‌های مود تسلیم و منحنی‌های هیسترزیس لنگرخمشی-دوران با یکدیگر انطباق خوبی داشت. سپس مدل‌های عددی متعددی برای در نظر گرفتن تاثیر پارامترها بر رفتار کلی اتصال شبیه‌سازی شدند. نتایج تحلیل‌ها نشان داد که محدوده‌ی مناسب ضخامت ورق اتصال برای اینکه به عنوان فیوز و جاذب انرژی عمل کند باید بین یک تا دو برابر ضخامت جان تیر باشد. همچنین فاصله‌ی آزاد ورق اتصال باید بین 4 تا 6 برابر ضخامت ورق باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

3D numerical investigation of seismic performance of moment connection with the plate in in-plane of column web

نویسندگان [English]

  • Seyed Morteza Salimi 1
  • Sepideh Rahimi 2
  • Mohammad Hosseinzadeh 3
  • Mehdi Ebadi Jamkhaneh 4
1 Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
2 Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
3 Department of Civil Engineering, School of Engineering, Islamic Azad University Nour Branch, Nour, Iran
4 School of Engineering, Damghan University, Iran
چکیده [English]

Up to date, most of the bending moment connections are designed to follow a weak beam-strong column rule, which imposes extensive fabricated and material costs and welding applications at the project site. Therefore, in order to eliminate these shortcomings, a relatively new bending moment connection that connects steel beam and column to each other only by connecting a plate in the direction of the beam and column web are studied as the parametric studies. The design criterion for the connection sheet was such that its flexural bending capacity was less than the bending capacity of the beam so that the connection plate would act as a metallic yielding damper and other elements would remain in the elastic state. Parameters such as thickness, height, slope, and plate material were considered in nonlinear static analyzes and the simulation of 12 numerical models of finite element in the Abaqus program under cyclic loading. Initially, the numerical model was compared with the test sample, and the behavior of the two samples in terms of failure mode and the hysteresis curves of the bending moment-rotation were well matched. Numerous numerical models were then simulated to consider the effect of parameters on the overall behavior of the connection. The results of the analysis showed that the appropriate range for the thickness of the connection plate to act as a fuse and energy absorber must be between one and twice the thickness of the beam web. Also, the free distance should be between 4 and 6 times the thickness of the plate.

کلیدواژه‌ها [English]

  • Moment connection
  • Connection plate
  • Moment-rotation curve
  • Elastic stiffness
  • Plastic moment capacity
  • Wang, S., et al., Seismic assessment of existing tall buildings: A case study of a 35-story steel building with pre-Northridge connection. Engineering Structures, 2017. 141: p. 624-633.
  • Ghaderi, M., M. Gerami, and R. Vahdani, Performance Assessment of Bolted Extended End-Plate Moment Connections Constructed from Grade St-37 Steel Subjected to Fatigue. Journal of Materials in Civil Engineering, 2020. 32(5): p. 04020092.
  • Wang, C.-H. and Y.-K. Wen, Evaluation of pre-Northridge low-rise steel buildings. I: Modeling. Journal of Structural Engineering, 2000. 126(10): p. 1160-1168.
  • Whittaker, A., A. Gilani, and V. Bertero, Evaluation of preNorthridge steel momentresisting frame joints. The Structural Design of Tall Buildings, 1998. 7(4): p. 263-283.
  • Youssef, N.F., D. Bonowitz, and J.L. Gross, A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake. 1995: US National Institute of Standards and Technology.
  • FEMA-355D, State of the Art Report on Connection Performance. prepared by the SAC Joint Venture for the Federal Emergency Management Agency, 2000.
  • Hamburger, R.O. and J.O. Malley, Seismic design of steel special moment frames. NEHRP seismic design technical brief, 2009(2).
  • Mahin, S.A., Lessons from damage to steel buildings during the Northridge earthquake. Engineering structures, 1998. 20(4-6): p. 261-270.
  • Venture, S.J., Interim guidelines: evaluation, repair, modification and design of steel moment frames. No. SAC, 1995. 95: p. 2.
  • 1Venture, S.J., Connection Test Summaries. Report FEMA, 1995. 289: p. 96-02.
  • 1Agency, F.E.M., State of the art report on past performance of steel moment-frame buildings in earthquakes.
  • MacRae, G.A., et al., The sliding hinge joint moment connection. Bulletin of the New Zealand Society for Earthquake Engineering, 2010. 43(3): p. 202-212.
  • Engelhardt, M.D. and T.A. Sabol, Seismicresistant steel moment connections: developments since the 1994 Northridge earthquake. Progress in structural engineering and materials, 1997. 1(1): p. 68-77.
  • Morrison, M.L., et al., An Unstiffened Eight-Bolt Extended End-Plate Moment Connection for Special and Intermediate Moment Frames. Journal of Structural Engineering, 2019. 145(7): p. 04019055.
  • Mashayekh, A. and C.-M. Uang, Cyclic response of sloped steel moment connections. Journal of Structural Engineering, 2019. 145(7): p. 04019058.
  • Kim, T. and E. Yu, Seismic analysis of steel moment frames with column-tree connections. Journal of Constructional Steel Research, 2019: p. 105871.
  • Najafgholipour, M., K. Peykari, and S. Dehghan, An alternative detail for continuity plates in steel beam to box-column moment-connections. Journal of Constructional Steel Research, 2020. 167: p. 105952.
  • Zhang, X., S. Zheng, and X. Zhao, Seismic performance of steel beam-to-column moment connections with different structural forms. Journal of Constructional Steel Research, 2019. 158: p. 130-142.
  • Astaneh-Asl, A., X. Qian, and Y. Shi, Application of Steel Shear Walls Toward More Resilient Structures, in Resilient Structures and Infrastructure. 2019, Springer. p. 3-46.
  • Hibbitt, Karlsson, and Sorensen, ABAQUS: theory manual. Vol. 2. 1997: Hibbitt, Karlsson & Sorensen.
  • Horne, M.R., and Morris, L. J. , Plastic design of low-rise frames. The MIT Press, 1982.
  • Committee, A., Specification for structural steel buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago-Illinois, 2010.
  • Council, A.T., Guidelines for cyclic seismic testing of components of steel structures. ATC-24, 1992.
  • Lubhner, J. Plasticity Theory. Macmillan, New York, 1990.
  • Guo, B., Q. Gu, and F. Liu, Experimental behavior of stiffened and unstiffened end-plate connections under cyclic loading. Journal of Structural Engineering, 2006. 132(9): p. 1352-1357.