ارزیابی احتمالاتی ظرفیت فروریزش لرزه‌ای قاب های مهاربند ی کمانش تاب مجهز به آلیاژ های حافظه‌دار شکلی

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، واحد رامسر، دانشگاه آزاد اسلامی، رامسر، ایران

2 گروه عمران، دانشکده مهندسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

3 گروه عمران، دانشکده مهندسی، واحد مشهد، دانشگاه آزاد اسلامی، مشهد، ایران

4 استادیار ،گروه مهندسی عمران ، واحد رامسر ، دانشگاه آزاد اسلامی، رامسر ، ایران

چکیده

امروزه مهاربندهای کمانش‌تاب (BRB) باتوجه به عدم کمانش در فشار، به عنوان سیستم مقاوم در برابر بارهای جانبی در نظرگرفته می‌شود. ولی این مهاربندها دارای معایبی نیز می باشند. ازجمله این معایب ایجاد تغییر شکل‌های ماندگار در سازه بعد از پایان بارگذاری و همچنین هزینه بر بودن تعویض این اعضا پس از خرابی و جاری شدن هسته‌ی فولادی این مهاربندها می باشد. از این ‌رو استفاده از آلیاژهای حافظه‌دار شکلی (SMAs) در سیستم‌های مهاربندی کمانش‌تاب با توجه به ویژگی‌های خاص این آلیاژها، می‌تواند گام مؤثری در بهبود پاسخ‌های لرزه‌ای باشد. در این تحقیق، ابتدا 2 قاب با تعداد طبقات 6 و12 دارای مهاربند‌های کمانش‌تاب در نرم-افزار ETABS بر اساس ضوابط آیین‌نامه‌ای به صورت سه‌بعدی طراحی و سپس قاب کناری آن‌ها در نرم‌افزار OpenSees به‌صورت دو بعدی در دو حالت با و بدون آلیاژ حافظه دار شکلی مدل‌سازی شده‌اند و در نهایت نقش آلیاژهای حافظه‌دار شکلی در آن‌ با استفاده از تحلیل‌های دینامیکی غیرخطی افزایشی (IDA) تحت 7‌زوج شتاب‌نگاشت دور از گسل پیشنهادی دستورالعمل FEMA P695 بررسی‌شده‌اند. بر اساس منحنی‌های IDA، ظرفیت فروریزش قاب‌های مذکور ارائه‌شده است. در نهایت منحنی‌های شکست برای سطح فروریزش توسعه داده‌شده‌اند. نتایج نشان می‌دهد که ظرفیت فروریزش قاب‌های دارای مهاربند مجهز به آلیاژ حافظه دار شکلی نسبت به مهاربند کمانش‌تاب بیش‌تر می‌باشد. به‌عنوان نمونه، در سطح احتمال 50 درصد، ظرفیت فروریزش قاب ‌12طبقه دارای مهاربند مجهز به آلیاژ حافظه دار شکلی نسبت به قاب دارای مهاربند کمانش تاب،30 درصد بیش‌تر می‌باشد. همچنین نتایج نشان می‌دهد که در قاب‌های 6 طبقه به ازای شتاب‌های طیفی مختلف، سیستم مهاربندی کمانش تاب مجهز به آلیاژ حافظه دار شکلی نسبت به سیستم‌ مهاربندی کمانش تاب می‌تواند 28 درصد احتمال فروریزش را کاهش دهد. با به کارگیری آلیاژ حافظه‌دار شکلی در این قاب ها می توان هزینه بازیابی سیستم خسارت دیده ساختمانی را کاهش داده و سیستم برگشت پذیرتری داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic Assessment the Seismic Collapse Capacity of Buckling-Restrained Braced Frames Equipped with Shape Memory Alloys

نویسندگان [English]

  • Majid Pouraminian 1
  • Seyede Vahide Hashemi 2
  • Abbasali Sadeghi 3
  • Somayyeh Pourbakhshian 4
1 Department of civil engineering , Islamic Azad University, Ramsar Branch , Ramsar, Iran
2 Ph.D. Candidate, Department of Civil Engineering, Faculty of Engineering (Shahid Nikbakht), University of Sistan and Baluchestan, Zahedan, Iran
3 PhD Candidate, Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
4 Assistant Professor, Department of Civil Engineering, Ramsar Branch, Islamic Azad University, Ramsar, Iran
چکیده [English]

Today, Buckling-Restrained Braces (BRB’s) are considered as lateral load-bearing systems due to their non-buckling in compression. But these braces also have disadvantages. Among these disadvantages is the creation of permanent deformation in the structure after the end of loading and also the costly replacement of these members after the failure and current of the steel core of these braces. Therefore, the use of Shape Memory Alloys (SMA’s) in BRB systems, given the specific characteristics of these alloys, can be an effective step in improving seismic responses. In this paper, seismic behavior of frames with BRB’s and the effect of utilizing SMA’s were studied. Then, three 2D-frames with 6 and 12 story were utilized. The OpenSees software used for the nonlinear time history analysis of frames. The BRB’s considered in two cases, with and without SMA’s. For development of fragility curves, according to FEMA P695 seven strong ground motion records was utilized. Incremental Dynamic Analysis (IDA) procedure was utilized to achieve probability of frame collapse. The results show that the collapsing capacity of BRB frames equipped with SMA’s is higher than that of the BRB frames. As an example, at the 50% probability level, the collapse capacity of a 12-story frame with a BRB equipped with SMA is 30% higher than that of a frame with BRB. The results also show that in 6-story frames for different spectral accelerations, the BRB system equipped with SMA compared to the BRB can reduce the probability of collapse by 28%. Using SMA’s in these building systems can reduce the cost of restoring and recovering of damaged systems and make the more resilient building system.

کلیدواژه‌ها [English]

  • Buckling Restrained Braces (BRB)
  • Shape Memory alloys (SMA)
  • Incremental Dynamic Analysis (IDA) Far-Fault Earthquake Record
  • FEMA P695 Guideline
  • Resilience
[1] Miranda, E., Betro, V. (1994), Evaluation of strength Reduction Factors for Earthquake Resistant Design Earthquake Spectra, 10(2), 357-379.
[2] D. J. Miller, L. A. Fahnestock, M. R. Eatherton, Development and experimental validation of a nickel–titanium shape memory alloy self-centering buckling-restrained brace, Engineering Structures, 40 (2012) 288–298.
[3] Asgarian, B., Moradi, S. (2011). Seismic response of steel braced frames with shape memory alloy braces, Journal of Construction steel research, Elsevier, Vol. 67, Issue 1, Pages 65-74.
[4] Maurya, A., Eatherton, M.R.Ryota Matsui, R., Florig, S.H. (2016), Experimental investigation of miniature buckling restrained braces for use as structural fuses, Journal of Constructional Steel Research, Volume 127,  54-65.
[5] Mahmoudi, M., Montazeri, S. (2016). Seismic performance assessment of knee bracing equipped with shape memory alloys. Journal of Structural and Construction Engineering, 3(2), 5-18.
[6] Ozcelik, R., Dikiciasik, E., Erdil, F. (2017), The development of the buckling restrained braces with new end restrains,  Journal of Constructional Steel Research, Volume 138,  208-220.
[7] Shen, J., Seker, O., Akbas, B., Seker, P., Momenzadeh, S.B., Faytarouni, M. (2017), Seismic performance of concentrically braced frames with and without brace buckling, Engineering Structures,Volume 141,  461-481.
[8] Mirzahosseini, M., Gerami, M. (2017). Evaluation of appropriate behavioral models for numerical simulation of new Cu based shape memory alloy. Journal of Structural and Construction Engineering, 4(4), 5-15. doi: 10.22065/jsce.2016.41240
[9] Hetao Hou, Han Li, Canxing Qiu, Yichen Zhang, Effect of hysteretic properties of SMAs on seismic behavior
of self‐centering concentrically braced frames, (2017), STRUCTURAL CONTROL AND HEALTH MONITORING.
[10] Fei Shi, Gokhan Saygili, Osman E. Ozbulut, Probabilistic seismic performance evaluation of SMA‑braced
steel frames considering SMA brace failure, (2018), Bulletin of Earthquake Engineering.
[11] Mehrsa Mirzahosseini, Mohsen Gerami, the Effect of Temperature on Seismic Response of Cu–Al–Mn SMA
Braced Frame, (2018), International Journal of Civil Engineering.
[12] Hong-Nan Li, Ming-Ming Liu, Xing Fu, An innovative re-centering SMA-lead damper
and its application to steel frame structures, (2018), SMART MATERIALS AND STRUCTURES.
[13] Gholhaki, M., khosravikhor, A., Rezayfar, O. (2018). Study Effect of Ni-Ti Shape Memory Alloy on Ductility of Steel Plate Shear Walls. Journal of Structural and Construction Engineering, (), doi: 10.22065/jsce.2018.114376.1431
[14] N. Mirzai, R. Attarnejad, Performance of EBFs equipped with an innovative shape memory alloy damper, International Journal of Science & Technology, (2018).
[15] Canxing, Q., Yichen, Z.,  Han, L.,  Bing, Q.,  Hetao, H.,  Li, T. (2018), Seismic performance of Concentrically Braced Frames with non-buckling braces, Engineering Structures, Volume 154,  93-102.
[16] Nazarimofrad, E., Shokrgozar, A., (2019), Seismic performance of steel braced frames with self‐centering buckling‐restrained brace utilizing superelastic shape memory alloys, Struct Design Tall Spec Build, DOI: 10.1002/tal.1666.
[17] Ghasem Pachideh, Majid Gholhaki ,AmirSaedi Daryan, Analyzing the damage index of steel plate shear walls using pushover analysis, Structures, Volume 20, August 2019, Pages 437-451
[18] A. Kheyroddin, M. Gholhaki and Gh. Pachideh, Seismic Evaluation of Reinforced Concrete Moment Frames Retrofitted with Steel Braces Using IDA and Pushover Methods in the Near-Fault Field, Journal of Rehabilitation in Civil Engineering 7-1 (2019) 159-173.
[19] Ghasem Pachideh Majid Gholhaki Rahim Lashkari,  Omid Rezayfar, Behavior of BRB Equipped with a Casing Comprised of Steel and Polyamide, Proceedings of the Institution of Civil Engineers-Structures and Buildings, March 16, 2020.
[20] FEMA P 695. (2009). Quantification of Building Seismic Performance Factors. Washington, D.C. Federal Emergency Management Agency, USA.
 [21] Wang, C., Usami, T., Funayama, J., (2012). “Evaluation the Influence of Stoppers on the Low-Cycle Fatigue Properties of High Performance Buckling Restrained Braces”, Engineering Structures, Vol. 41, pp. 167-176.
[22] Uang, C.M., Tsai, K.C.  )2004(, Research and application of buckling-restrained braced frames, Steel Structures, 4(4), 301-13.
[23] Han, Y.L., Li, Q., Li A.Q., Leung, A., Lin, P.H. (2003), Structural vibration control by shape memory alloy damper, Earthquake engineering & structural dynamics, 32(3), 483-94.
[24] Ocel, J., DesRoches, R., Leon, R.T., Hess, W.G., Krumme, R., Hayes, J.R. (2005), Steel beam-column connections using shape memory alloys, Structural engineering, 130(5).
[25] Cismasiu, C., Dos Santos, F.P.A. (2008), Numerical simulation of a semi-active vibration control device based on super elastic shape memory alloy wires, Smart Materials and Structures 17(2), 936-954.
[26] Corbi, O. (2003), Shape memory alloys and their application in structural oscillations attenuation, Simulation Modelling Practice and Theory, 11, 387–402.
[27] Shook, D.A., Roschke, P.N., and Ozbulut, O. E. (2008), Superelastic semiactive damping of a base-isolated structure. Structural Control and Health Monitoring, 15, 746–768.
[28] Dolce, M., Donatello, C., and Ponzo, F.C. (2007), Shaking-table tests on reinforced concrete frames with different isolation systems, Earthquake Engineering and Structural Dynamics, 36, 573–596.
[29] Andrawes, B., DesRoches, R. (2007), Comparison between Shape Memory Alloy Restrainers and and Other Bridge Retrofit Devices. ASCE Journal of Bridge Engineering 12(6), 700–709.
[30] DesRoches, R., Delemont, M. (2002), Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures, 24, 325–332.
[31] Alam, M. S., Youssef, M. A., and Nehdi, M. (2007), Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Canadian Journal of Civil Engineering 34, 1075–1086.
[32] Sandi, H., Vacareanu, R. (1997), parametric analysis of cumulative damage, 11th European Conference on Earthquake Engineering, Balkema, Rotterdam.
[33] Nasserasadi, K. Ghafory-Ashtiany, M. Eshghi, S. Zolfaghari, M.R. (2009), Developing Seismic Fragility Function of Structures By Stochastic Approach, Asian Journal of Civil Engineering (Building and Housing), 10(2), 183-200.
[34] Lignos, D.G. Karamanci, E. (2013), Drift-Based and Dual-Parameter Fragility Curves for Concentrically Braced Frames in Seismic Regions. Journal of Constructional Steel Research 90, 209–220.
[35] INBC. (2013). Design and Construction of Steel Structures. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 10. (In Persian).
[36] INBC. (2013). Design Loads for Buildings. Tehran: Ministry of Housing and Urban Development, Iranian National Building Code, Part 6. (In Persian).
[37] BHRC. (2014). Iranian code of practice for seismic resistant design of buildings. Tehran: Building and Housing Research Centre, Standard No. 2800. (In Persian).
[38] Mazzoni, S., Mckenna, F., Scott, M.H., Fenves, G.L. (2006) OpenSees Command Language Manual. http://OpenSees.Berkeley.edu/OpenSees/manuals/ user manual/OpenSees Command Language Manual.pdf.
[39] Miller, D.J. (2011), Development and experimental validation of self-centering buckling-restrained braces with shape memory alloy, Master's dissertation, University of Illinois at Urbana–Champaign.
[40] Taftali, B. (2007), Probabilistic seismic demand assessment of steel frames with shape memory alloy connections, PhD. Dissertation, Georgia Institute of Technology, َAtlanta.
[41] PEER report.
[42] Commentary of Instruction for seismic Rehabilitation of Existing Buildings, NO: 361. Islamic Republic of Iran Plan and Budget Organization, 2018, (In Persian).