ارزیابی خصوصیات مکانیکی و دوام بتن با پودر سنگ مرمر کردستان

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه شاهد-تهران-ایران

2 گروه مهندسی عمران، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

چکیده

پودر سنگ مرمر (MD) یکی از اصلی ترین عناصر مورد استفاده در سرامیک، کاشی و سفال می‌باشد. از این پودر با دانه‌بندی مختلف در بسیاری از صنایع مانند لاستیک، پلاستیک، چرم مصنوعی، مواد شوینده و دارو استفاده می‌شود. طبق مطالعات نویل پرکننده می‌تواند به صورت طبیعی و یا به صورت فرآوری شده وجود داشته باشد. پرکننده‌ها باید ویژگی و نرمی یکنواختی داشته باشند. نباید هنگام استفاده در بتن، میزان آب مصرفی را افزایش دهند، همچنین مقاومت بتن را تحت تاثیر قرار ندهند. در برخی از تحقیقات تاثیر این پودر بر مشخصات بتن مورد توجه بوده است. در این مطالعه، مزایای استفاده از پودر سنگ مرمر بر خصوصیات مکانیکی و دوام بتن به عنوان یک افزودنی معدنی بررسی می‌شود. هدف اصلی این مطالعه، بررسی تأثیر پودر سنگ مرمر تهیه شده از ضایعات معادن سنگ منطقه کردستان (ایران) بر روانی، مقاومت فشاری و دوام بتن در سن 28 روز است. بنابراین 180 نمونه بتنی مکعبی با مقادیر مختلف نسبت آب به سیمان و پودر سنگ مرمر به ماسه ساخته شدند. نتایج آزمایش نشان می‌دهد که افزودن پودر سنگ مرمر به بتن اثرات خوبی بر مقاومت فشاری بتن در مقادیر بالای نسبت آب به سیمان دارد. همچنین با افزودن پودر سنگ مرمر به بتن می‌توان افزایش دوام بتن را پیش بینی کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of mechanical properties and durability of concrete with provided marble dust from Kurdistan

نویسندگان [English]

  • Alireza Habibi 1
  • Aryan Bazrafkan 2
  • Arash Sayari 2
1 Shahed University-Tehran-Iran
2 Department of Civil Engineering, Sanandaj branch, Islamic Azad University, Sanandaj, Iran
چکیده [English]

Marble dust is an industrial by-product that has recently been used as a mineral powder to improve the mechanical properties of concrete. Furthermore, since large amounts of marble dust is available in the waste of stone crushing plants in areas like Kurdistan, employing this powder in the process of making concrete reduces both environmental pollution and the final price of concrete. In this paper, an experimental study was conducted to evaluate the effects of using marble dust as a partial replacement of sand in concrete on slump, 28-day compressive strength, and durability at 28 days. To this end, 180 cubic specimens with 30 mixing designs were tested at the age of 28 days. Studied mixing designs by considering two general groups include three ratios of water to cement (0.4, 0.45, and 0.5) with five ratios of marble dust to sand (0, 0.05, 0.1, 0.15, and 0.2) for each water to cement ratios, and two fineness moduluses of 2.4, and 3 for each groups. The results indicated that partial replacement of sand with marble dust in concrete has different effects on concrete slump. Whereas, it improves compressive strength and decreases permeability of concrete. Moreover, it was found that for each of water to cement ratios, and for both quantities of fineness modulus of sand, increasing marble dust-to-sand ratio from 0 to 20%, increases the compressive strength by 5 to 16% with respect to its respective control specimen. In addition, the results indicated that for each of water to cement ratios, and for both amounts of fineness modulus of sand, increasing the marble dust to sand ratio from 0 to 20%, decreases the depth of water penetration by 55 to 79% with respect to its respective control specimen.

کلیدواژه‌ها [English]

  • Marble dust
  • Mix Design
  • Slump
  • Compressive strength
  • Depth of water penetration
[1] Neville, A. M. (1995). Properties of concrete. Longman Group Limited, London, UK, 88.
[2] Pachideh, G., Gholhaki, M., Moshtagh, A. (2019). On the post-heat performance of cement mortar containing silica fume or granulated blast-furnace slag. Journal of Building Engineering, [online] 24, Available at: https//doi.org/10.1016/j.jobe.2019.100757.
[3] Pachidah, G., Gholhaki, M. (2020). Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag. Journal of Structural Fire Engineering, [online] Available at: https//doi.org/10.1108/JSFE-11-2018-0038.
[4] Chang, S. C., Wang, C. C., Wang, H. Y. (2018). Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders. Computers and Concrete, 21 (3), 311-319.
[5] Pachideh, G., Gholhaki, M., Ketabdari, H. (2020). Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. Journal of Building Engineering, [online] 29, Available at: https//doi.org/10.1016/j.jobe.2020.101178.
[6] Al-Tayeb, M. M, Abu Bakar, B. H., Md Akil, H., Ismail, H. (2013). Experimental and numerical investigations of the influence of reducing cement by adding waste powder rubber on the impact behavior of concrete. Computers and Concrete, 11 (1).
[7] Pachideh, G., Gholhaki, M. (2019). Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. Journal of Building Engineering, [online] 26, Available at: https//doi.org/10.1016/j.jobe.2019.100856.
[8] Pachideh, G., Gholhaki, M., Moshtagh, A. (2020). Experimental study on mechanical strength of porous concrete pavement containing pozzolans. Advanced in Civil Engineering Materials, 9 (1) 38-52.
[9] Shiramura, Satoru, Suzuki, Noriyuki. (1994). Effect of changing the mixing ratio of fine powder on characteristics of RCD concrete. Proceedings of the Japan Society of Civil Engineering, 484, 77-86.
[10] Togawa, Kazuo Shoya, Masami, Kokubu, Katsuro. (1996). Characteristics of bleeding, freeze-thaw resistance and watertightness of concrete with ferro-nickel slag fine aggregates. Zairyo/Journal of the Society of Materials Science, 45 (1), 101-109.
[11] Nas, M., Kurbetci, S. (2018). Mechanical durability and microstructure properties of concrete containing natural zeolite. Computers and concrete. 22 (5), 449-459.
[12] Uchikawa, H., Henehara, S., Hirao, H. Jan (1996). Influence of microstructure on the physical properties of concrete by substituting mineral powder for part of fine aggregate. Cement and Concrete Research, 26 (1), 101-111.
[13] Jindal, B-B., Singhal, D., Sharma, S., Parveen. (2018). Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture. Computers and concrete, 21 (3), 345-353.
[14] Kobayashi, Koichi, Hattori, Atsushi, Miyagawa, Toyooki, Fujii, Manabu. (1996). Characters of interfacial zone of cement paste with additives around aggregate. Zairyo/Journal of the Society of Materials Science, 45 (9), 1001-1007.
[15] Sakata K., Ayano T. (1996). Study of mix design method for self-compactable high performance concrete with limestone powder. Zairyo/Journal of the Society of Materials Science, 45 (9), 993-1000.
[16] Sawicz, Z., Heng, S.S. (1996). Durability of concrete with addition of limestone powder. Magazine of Concrete Research, 48 (175), 131-137.
[17] Kobayashi, K., Hattori, A., Miyagawa, T., Fujii, M. (1997). Effects of limestone powder as additive on hydration of cement in early age. Internal Conference on Engineering Materials, 811-815.
[18] Gallias, J. L., Kara-Ali, R., Bigas, J. P. (2000). The Effect of fine mineral admixtures on water requirement of cement pastes. Cement and Concrete Research, 1543-1549.
[19] Kato, H., Nakamura, A., Doi, H., Miyagawa, T. (2001). Strength development and autogenous shrinkage of high-flow concrete with limestone powder. Zairyo/Journal of the Society of Materials Science, 50 (5), 543-549.
[20] Beeralingegowda, B., Gundakalle, V.D. (2013). The effect of addition of limestone powder on the properties of self-compacting concrete. International Journal of Innovative Research in Science, Engineering and Technology, 2 (9) 4996.
[21] Habibi, A. (2010). Mechanical properties of concrete with limestone powder. Quarterly Journal of Concrete Research, 2, (2), 71-84. (In Persian).
[22] ISIRI Number 389. (2017). Specification for Portland Cement. Institute of Standards and Industrial Research of Iran, 8th Edition, Iran. (In Persian).
[23] ASTM Standards: C33-03. (2003). Standard Specification for Concrete Aggregates, American Society for Testing and Materials.
[24] ASTM Standards: C136-06. (2006). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials.
[25] 9th issue of the national building regulations. (2013). Reinforced concrete structures codes. Iran Standard, 4th Edition, Iran. (In Persian).
[26] INSO Number 2930-2. (2014). Admixtures for concrete, mortar and grout-part 2: Concrete admixtures specifications. Iranian national standardization organization, 1st Edition, Iran. (In Persian).
[27] ACI: 211.1-91, (reapproved 2002) - Standard Practice for selecting proportions for normal, heavyweight, and mass concrete: American Concrete Institute.
[28] BS EN 12390-2. (2019). Testing hardened concrete. Making and curing specimens for strength tests.
[29] BS EN 12350-2. (2019). Testing Fresh concrete. Slump Test.
[30] BS EN 12390-3. (2019). Testing hardened concrete. Compressive strength of test specimens.
[31] BS EN 12390-8. (2019). Testing hardened concrete. Depth of penetration of water under pressure.