مطالعه‌ی عددی رفتار حرارتی ستون های فولادی پر شده با بتن به همراه پوشش حرارتی منبسط شونده IFC

نوع مقاله : علمی - پژوهشی

نویسندگان

1 استادیار، گروه مهندسی عمران، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه رازی، کرمانشاه، ایران

چکیده

خطر بالقوه آتش‌سوزی یکی از پدیده‌های مهمی است که می‌تواند باعث خسارت به سازه شود. بنابراین، برای ستون ها به عنوان اجزای باربر اصلی یک سازه که به دلایل ایمنی نیاز به مقاومت کافی در برابر آتش دارند، اضافه کردن پوشش محافظ آتش امری ضروری است. در این پژوهش تأثیر پوشش رنگ منبسط شونده روی توزیع دما در مقطع و زمان مقاومت در برابر آتش ستون‌های فولادی پر شده با بتن که مناسب مناطق با لرزه خیزی بالا و ساختمان های بلند هستند، مورد بررسی قرار گرفته است. بدین منظور ابتدا مدل اجزای محدود یک ستون فولادی پر شده با بتن تحت اثر آتش استاندارد ایزو 834، طبق داده‌های آزمایشگاهی موجود، تهیه و تحلیل شده است. پس از صحت سنجی نتایج بدست آمده از مدل اجزای محدود در مقایسه با داده های آزمایشگاهی، نمونه های مختلفی از ستون های با مقاطع دایره، مستطیل، مربع و بیضی به صورت محافظت شده، بر اساس آیین نامه ی فولاد ایران طراحی و توسط نرم افزار اجزای محدود آباکوس مدل سازی و تحلیل شده است. نتایج به دست آمده نشان می‌دهد پوشش رنگ منبسط شونده باعث افزایش مدت زمان تاب آوری در برابر آتش ستون های فولادی پر شده با بتن با سطح مقطع دایره، مربع، مستطیل و بیضی به ترتیب به میزان، 2/2، 3/3، 14/4 و 36/3 برابری نسبت به نمونه های مذکور بدون پوشش محافظتی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Study of Thermal Behaviour of Concrete Filled Steel Tube Columns protected with Intumescent Fire Coating

نویسندگان [English]

  • Ebrahim Kalilzadeh Vahidi 1
  • mosayeb hassani jalilian 2
1 Assistant Professor , department of Civil Engineering, Razi University, Kermanshah, Iran
2 Department of Civil Engineering, Faculty of Engineering, Razi University, Kermanshah, Iran
چکیده [English]

The potential danger of fire is one of the important phenomena that may cause Irreparable damages the structure. Therefore, add fire protection is essential for columns as the main components of a structure that require sufficient fire resistance for increase in safety. In this study, the effect of expandable paint coating on the temperature distribution at the cross section and time of fire resistance of concrete-filled steel columns that are suitable for high seismic areas and tall buildings have been studied. For this purpose, in first step the finite element model of a steel column filled with concrete under ISO 834 standard fire was prepared and analyzed according to available laboratory data. After validation of the results from the finite element model in comparison with the laboratory data, various specimens of columns that protected with Intumescent Fire Coating and with circular, rectangular, square and oval sections, designed according to the Iranian Steel Code and has been modeled and analyzed by Abacus finite element software. The results show that the expandable paint coating increases the fire resistance of concrete-filled steel columns with circular, square, rectangular and oval cross sections by 2.2, 3.3, 4.14 and 3.36 equality has been afforded to those without protective cover.

کلیدواژه‌ها [English]

  • Concrete filled steel tube
  • Fire
  • Fire Resistance
  • Fire Protection
  • Intumescent fire coating
[1] Song, Q. Y., Han, L. H., Zhou, K., & Feng, Y. (2018). Fire resistance of circular concrete-filled steel tubular (CFST) column protected by intumescent coating. Journal of Constructional Steel Research147, 154-170. https://doi.org/10.1016/j.jcsr.2018.03.038
[2] National Fire Protection Association, (2012). Building construction and safety code, NFPA 5000.
[3] Wang, Yong C. (2014). Steel and composite structures: Behaviour and design for fire safety. CRC Press.
[4] Lennon, T., Moore, D. B., & Bailey, C. (1999). The behaviour of full-scale steel-framed buildings subjected to compartment fires. The Structural Engineer77(8), 15 - 21.
[5] Association for Specialist Fire Protection, (2014). Fire protection for structural steel in buildings, 5th Edition Ed: Association for Specialist Fire Protection, Steel Construction Institute, Fire Test Study Group.
[6] China Association for Engineering Construction Standardization, (2006).  Technical Code for Fire Safety of Steel Structure in Buildings, CECS200–2006, China Planning Press, Beijing.
[7] Lucherini, A., Giuliani, L., & Jomaas, G. (2018). Experimental study of the performance of intumescent coatings exposed to standard and non-standard fire conditionsFire Safety Journal95, 42-50. https://doi.org/10.1016/j.firesaf.2017.10.004
[8] Gillet, M., Autrique, L., & Perez, L. (2007). Mathematical model for intumescent coatings growth: application to fire retardant systems evaluation. Journal of Physics D: Applied Physics40(3), 883. https://doi.org/10.1088/0022-3727/40/3/030
[9] Zhang, Y., Wang, Y. C., Bailey, C., & Taylor, A. P. (2012). Global modelling of fire protection performance of intumescent coating under different cone calorimeter heating conditions. Fire Safety Journal50, 51-62. https://doi.org/10.1016/j.firesaf.2012.02.004
[10] Cirpici, B. K., Wang, Y. C., Rogers, B. D., & Bourbigot, S. (2016). A theoretical model for quantifying expansion of intumescent coating under different heating conditions. Polymer Engineering & Science56(7), 798-809.
[11] Cirpici, B. K., Wang, Y. C., & Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal81, 74-84.‏ https://doi.org/10.1016/j.firesaf.2016.01.011
[12] Yew, M. C., & Sulong, N. R. (2012). Fire-resistive performance of intumescent flame-retardant coatings for steel. Materials & Design34, 719-724. https://doi.org/10.1016/j.matdes.2011.05.032
[13] Han, L. H., He, S. H., & Liao, F. Y. (2011). Performance and calculations of concrete filled steel tubes (CFST) under axial tension. Journal of Constructional Steel Research67(11), 1699-1709. https://doi.org/10.1016/j.jcsr.2011.04.005
[14] Han, L. H., Yang, Y. F., & Xu, L. (2003). An experimental study and calculation on the fire resistance of concrete-filled SHS and RHS columns. Journal of constructional steel research59(4), 427-452. https://doi.org/10.1016/S0143-974X(02)00041-X
[15] Lie, T. T. (1994). Fire resistance of circular steel columns filled with bar-reinforced concrete. Journal of structural engineering120(5), 1489-1509. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:5(1489)
[16] Tao, Z., Ghannam, M., Song, T. Y., & Han, L. H. (2016). Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire. Journal of Constructional Steel Research118, 120-134. https://doi.org/10.1016/j.jcsr.2015.11.003
[17] CEN, Eurocode 4, (2005).design of composite steel and concrete structures. part 1-2: general rules-structural fire design, EN 1994-1-2.
[18] Albero, V., Espinos, A., Romero, M. L., Hospitaler, A., Bihina, G., & Renaud, C. (2016). Proposal of a new method in EN1994-1-2 for the fire design of concrete-filled steel tubular columns. Engineering Structures128, 237-255. https://doi.org/10.1016/j.engstruct.2016.09.037
[19] Sakumoto, Y., Okada, T., Yoshida, M., & Tasaka, S. (1994). Fire resistance of concrete-filled, fire-resistant steel-tube columns. Journal of Materials in Civil Engineering6(2), 169-184. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(169)
[20] Edwards, M. (1998). The performance in fire of concrete filled SHS columns protected by intumescent paint. A. A. Balkema Publishers, Tubular Structures VIII(USA), 491-498.
[21] Edwards, M. (2001). The performance in fire of fully utilised concrete filled SHS columns with external fire protection.  TUBULAR STRUCTURES-INTERNATIONAL SYMPOSIUM-. Vol. 9.
[22] Binh, CHU Thi. (2009). Hollow steel section columns filled with self-compacting concrete under ordinary and fire conditions. Diss. PhD thesis, University of Liege, Belgium.
[23] Rush, D., Bisby, L., Gillie, M., Jowsey, A., & Lane, B. (2014). Design of intumescent fire protection for concrete filled structural hollow sections. Fire safety journal67, 13-23. https://doi.org/10.1016/j.firesaf.2014.05.004
[24] YAHYAI, M., REZAEIAN, A., & SAFAEIAN, M. (2017). RESPONSE OF STEEL BOX COLUMNS IN FIRE CONDITIONS. (in Persian). http://dx.doi.org/10.22065/jsce.2017.44333
[25] Lie, T. T., & Irwin, R. J. (1995). Fire resistance of rectangular steel columns filled with bar-reinforced concrete. Journal of structural engineering121(5), 797-805. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:5(797)
[26] Hong, S., & Varma, A. H. (2009). Analytical modeling of the standard fire behavior of loaded CFT columns. Journal of Constructional Steel Research65(1), 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008
[27] CEN. EN 1992-1-2, Eurocode 2: (2004).design of concrete structures, part 1.2: general rules—structural fire design. Brussels (Belgium): Comité Européen de Normalisation.
[28] CEN. EN 1993-1-2, Eurocode 3: (2005).design of steel structures, part 1.2: general rules—structural fire design. Brussels (Belgium): Comité Européen de Normalisation.
[29] Wang, K., & Young, B. (2013). Fire resistance of concrete-filled high strength steel tubular columns. Thin-Walled Structures71, 46-56. https://doi.org/10.1016/j.tws.2013.05.005
[30] ISO (International Standards Organization). (1980). ISO 834: fire resistance tests, elements of building construction. Switzerland: International Standards Organisation.
[31] CEN. EN 1991-1-2, Eurocode 1: (2002). actions on structures, part 1.2: general actions—actions on structures exposed to fire. Brussels (Belgium): Comité Européen de Normalisation.
[32] Ghojel, J. (2004). Experimental and analytical technique for estimating interface thermal conductance in composite structural elements under simulated fire conditions. Experimental Thermal and Fluid Science28(4), 347-354. https://doi.org/10.1016/S0894-1777(03)00113-4
[33] Gholhaki, M., Pachideh, G., & Rezaeafar, O. An experimental study on mechanical properties of concrete containing steel and polypropylene fibers at high temperatures. (in Persian). http://dx.doi.org/ 10.22065/jsce.2017.77392.1072
[34] Espinos, A., Romero, M. L., Serra, E., & Hospitaler, A. (2015). Experimental investigation on the fire behaviour of rectangular and elliptical slender concrete-filled tubular columns. Thin-Walled Structures93, 137-148. https://doi.org/10.1016/j.tws.2015.03.018
[35] Dai, X. H., & Lam, D. (2014). A numerical study on the effect of concrete infill and intumescent coating to fire-resistant behaviour of stub elliptical steel hollow sections under axial compression. Advanced Steel Construction10(3), 310-324.
[36] Mirza, O., & Uy, B. (2009). Behaviour of headed stud shear connectors for composite steel–concrete beams at elevated temperatures. Journal of Constructional Steel Research65(3), 662-674. https://doi.org/10.1016/j.jcsr.2008.03.008