تاثیرات اندرکنش دینامیکی بین تجهیزات متصل پست های برق بر پاسخ لرزه ای

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دستیار تحقیقاتی / دانشگاه صنعتی شریف

2 هیئت علمی دانشگاه شریف

چکیده

تاثیر اندرکنش دینامیکی بین تجهیزات پست های برق در سیستم های چند تجهیزه متصل بر پاسخ لرزه ای بررسی شده است. همچنین تاثیرات تغییر پذیری رکورد و تغییرات شدت لرزه ای بر نتایج اندرکنش مطالعه شده است. مدل های سه بعدی برای چهار تجهیز آسیب-پذیر پست های برق شامل برق گیر، ترانس جریان، کلید قدرت و سکسیونر توسعه و صحت سنجی شده است. شش سیستم مختلف از تجهیزات متصل توسط المان های هادی صلب شامل سیستم های دو، سه و چهار تجهیزه در نظر گرفته شده اند. تحلیل دینامیکی افزایشی با استفاده از رکورد های سه مولفه ای بر روی مدل ها انجام شده است. نسبت ماکزیمم پاسخ ها در شرایط متصل به ماکزیمم پاسخ ها در شرایط غیر متصل برای ارزیابی اثرات اندرکنش استفاده شده است. در نظر گرفتن بیش از دو تجهیز متصل و استفاده از مدل های سه بعدی از نوآوری های این پژوهش می باشد. اهمیت در نظر گرفتن بیش از دو تجهیز متصل در مطالعات اندرکنش نشان داده شده است. نتیجه شده که تغییرات مشخصات حرکت زمین مانند محتوای فرکانسی تاثیر بیشتری بر نتایج اندرکنش تجهیزاتی داشته که مشارکت مود های بالاتر بر پاسخ آن ها قابل توجه است. بعلاوه نتیجه شده که تغییر پذیری رکورد نسبت به تعییرات شدت لرزه ای تاثیر بیشتری بر میزان تقلیل یا تشدید پاسخ ها به دلیل وجود اثرات اندرکنش دارد. تغییرات نسبت های پاسخ در شدت های پایین زیاد بوده ولی با افزایش شدت این تغییرات کمتر شده است. سختی بالای اتصال دهنده در شدتهای پایین دلیل اصلی این نتیجه میباشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Influence of Dynamic Interaction Between Interconnected Electrical Substation Equipment on Seismic Response

نویسندگان [English]

  • Amir Ghahremani Baghmisheh 1
  • Homayoon Estekanchi 2
1 Research Assistant / Sharif University of Technology
2 Faculty of the Department of Civil Engineering, Sharif University of Technology
چکیده [English]

Effects of dynamic interaction between substation equipment in multi-connected systems on seismic response has been investigated. Also, influence of record to record and intensity variability on interaction results is studied. Three dimensional models of four vulnerable types of equipment including surge arrester, current transformer, circuit breaker and disconnect switch are developed and verified. Six different systems of equipment connected through rigid bus bars comprising of two, three and four equipment are considered. Incremental dynamic analysis is carried out on models using three-component records. Ratio of maximum responses in connected condition to those in unconnected condition has been utilized as interaction measure. Considering more than two-connected equipment and using three dimensional models are novelties of this paper. Importance of considering more than two-connected equipment has been demonstrated. It is found that for equipment in which contribution of higher modes on responses are notable, variation of ground motion features such as frequency content have more effect on interaction results than equipment in which natural frequency is dominant on responses. It is concluded that variability of record has more significant influence on interaction results than variation of seismic intensity. Differences in response ratios were higher at low intensities as compared to high intensity levels. High stiffness of connector at low intensities is the main reason for this result.

کلیدواژه‌ها [English]

  • Electrical substation
  • Interconnected equipment
  • Dynamic interaction
  • Incremental dynamic analysis
  • Seismic response
[1]  Nuti C, Rasulo A, Vanzi I (2007). Seismic safety evaluation of electric power supply at urban level. Earthq Eng Struct Dyn;36:245–63.
[2]  Li S, Tsang HH, Cheng Y, Lu Z (2017). Considering seismic interaction effects in designing steel supporting structure for surge arrester. J Constr Steel Res;132:151–63. doi:10.1016/j.jcsr.2017.01.012.
[3]  Alessandri S, Giannini R, Paolacci F, Malena M. Seismic retrofitting of an HV circuit breaker using base isolation with wire ropes. Part 1: Preliminary tests and analyses (2015). Eng Struct;98:251–62.
[4]  Kong D (2010). Evaluation and protection of high voltage electrical equipment against severe shock and vibrations. Phd Diss Dep Civil, Struct Environ Eng State Univ New York Buffalo.
[5]  Takhirov S, Fenves G, Fujisaki E (2004). Seismic Qualification and Fragility Testing of Line Break 550-kV Disconnect Switches. Pacific Earthquake Engineering Research Center, Report 2004/08. PEER. Univ California, Berkeley.
[6]  Mosalam KM, Günay S TS (2016). Response evaluation of interconnected electrical substation equipment using real-time hybrid simulation on multiple shaking tables. Earthq Eng Struct Dyn;45:2389–404. doi:10.1002/eqe.
[7]  Der Kiureghian A, Sackman JL, Hong KJ (1999). Interaction in Interconnected Electrical Substation Equipment Subjected to Earthquake Ground Motions. PEER.
[8]  Filiatrault A KS (2000). Seismic interaction of interconnected electrical substation equipment. J Struct Eng;126:1140–9. doi:10.1016/S0950-1401(10)04009-7.
[9]  Der Kiureghian A, Hong K-J, Sackman JL (2000). Further studies on seismic interaction in interconnected electrical substation equipment. PEER.
[10]        Stearns C, Filiatrault A (2004). Electrical Substation Equipment Interaction : Experimental Rigid Conductor Studies. PEER.
[11]        Song J, Der Kiureghian K SJ (2004). Seismic response and reliability of electrical substation equipment and systems. (Doctoral Diss Univ California, Berkeley). doi:10.1017/CBO9781107415324.004.
[12]        Dastous JB DKA (2010). Application guide for the design of flexible and rigid bus connections between substation equipment subjected to earthquakes. PEER.
[13]        Mohammadi RK, Nikfar F, Akrami V (2012). Estimation of required slack for conductors connecting substation equipment subjected to earthquake. IEEE Trans Power Deliv;27:709–17.
[14]        Dastous J-B, Pierre J-R (2007). Design methodology for flexible buswork between substation equipment subjected to earthquakes. IEEE Trans Power Deliv;22:1490–7.
[15]        Mohammadi RK, Tehrani AP (2014). An investigation on seismic behavior of three interconnected pieces of substation equipment. IEEE Trans Power Deliv;29:1613–20.
[16]        S. Li, H.H. Tsang, Y.F. Cheng ZCL (2017). Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations. Earthquakes Struct;12:55–65.
[17]        McKenna F, Fenves G, Filippou FC MS (2000). Open System for Earthquake Engineering Simulation (OpenSees).
[18]        Hatami M, Ghafory-Ashtiany M, Hosseini M (2004). Experimental and analytical study of a high voltage instrument transformer. Proc. 13th World Conf. Earthq. Eng. (13WCEE), Vancouver, Br. Colomb. Canada.
[19]        Baghmisheh AG, Estekanchi HE (2019). Effects of rigid bus conductors on seismic fragility of electrical substation equipment. Soil Dyn Earthq Eng;125:105733.
[20]        Vamvatsikos D, Cornell CA (2002). Incremental dynamic analysis. Earthq Eng Struct Dyn;31:491–514.
[21]        FEMA P695 (2009). Quantification of building seismic performance factors. Fed Emerg Manag Agency, Washington, DC  doi:10.1016/j.compstruc.2009.08.001.
[22]        IEEE Standard 693 (2005). IEEE Recommended Practice for Seismic Design of Substations. (Revision of IEEE 693-1985 & 1997).
[23]        Zareei SA, Hosseini M G-AM (2016). Seismic failure probability of a 400 kV power transformer using analytical fragility curves. Eng Fail Anal;70:273–89. doi:10.1016/j.engfailanal.2016.09.007.
[24]        Mohammadpour S HM (2017). Experimental system identification of a 63kV substation post insulator and developing its fragility curves by dynamic finite element analyses. Earthq Spectra;33:1149–72.