بررسی تاثیر نانوسیلیس بر مشخصات مکانیکی کامپوزیت ‌های سیمانی حاوی الیاف پلی پروپیلن

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانشگاه شهید رجایی

2 گروه سازه، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی، تهران، ایران

3 کارشناس ارشد سازه، دانشگاه شهید رجایی، تهران

چکیده

هدف از این تحقیق، بررسی تاثیر افزودن نانوسیلیس و میکروسیلیس بر مشخصات مکانیکی کامپوزیت‌های سیمانی حاوی الیاف پلی پروپیلن است. بدین منظور، آزمایش‌هایی دربرگیرنده ی 13 طرح مخلوط با نسبت آب به مواد سیمانی 28/0 مد نظر قرار گرفتند. یک طرح بدون میکروسیلیس و نانوسیلیس، 4 طرح با درصد نانوسیلیس جایگزین سیمان 5/0% ، 1% ، 3% ، 5% ، 4 طرح با درصد میکروسیلیس جایگزین سیمان 5% ، 7% ، 10% ، 15% و 4 طرح با ترکیب میکروسیلیس و نانوسیلیس در نظر گرفته شد. طبق نتایج آزمایش، نمونه‌‌های ترکیبی دارای میکروسیلیس و نانوسیلیس، نتیجه‌ی بهتری نسبت به نمونه‌های حاوی ذرات نانوسیلیس یا میکروسیلیس به تنهایی داشتند. در واقع، نتایج آزمایش های 28 روزه نشان داد که ترکیب 10% میکروسیلیس و1% نانوسیلیس بهترین نتیجه را در مقاومت های فشاری و کششی و خمشی این کامپوزیت ایجاد کرد. مقدار 32/61 مگاپاسکال مقاومت فشاری با 69/44 درصد افزایش و 319/4 مگاپاسکال مقاومت کششی با 88/34 درصد افزایش و 971/6 مگاپاسکال مقاومت خمشی با 37/30 درصد افزایش مقاومت نسبت به نمونه‌ی شاهد را داراست. 5. مقدار نانوسیلیس بیشتر از 3 درصد، هم در نمونه‌های ترکیبی هم در نمونه‌های بدون میکروسیلیس ، نتیجه‌ی منفی نسبت به نمونه‌ی شاهد داشته است. به عنوان مثال در نمونه‌ی حاوی 5 درصد نانوسیلیس و بدون میکروسیلیس، مقدار 41/37 مگاپاسکال مقاومت فشاری و درصد تغییرات نسبت به نمونه‌ی شاهد 72/11- درصد می‌باشد. 4. نتایج آزمایش میکروسکوپ الکترونی روبشی نشان می‌دهد که نمونه های حاوی نانوسیلیس چگال‌تر و نفوذ ناپذیر تر از نمونه های حاوی میکروسیلیس به تنهایی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of nanosilica on the mechanical properties of cementitious composites containing polypropylene fibers

نویسندگان [English]

  • Moosa Mazloom 1
  • Sarina Norouzi 2
  • Mohammad Akbari Jamkarani 3
1 Shahid Rajaee Teacher Training University
2 Structural Engineering, Civil Engineering Department, Shahid Rajaee Teacher Training University, Tehran, Iran
3 M.Sc. in Structural Engineering, Shahid Rajaee UniversityT Tehran
چکیده [English]

The purpose of this study is to investigate the effects of adding nanosilica and microsilica on the mechanical properties of cementitious composites containing polypropylene fibers. For this purpose, 13 composite mixes with the water to cement ratio of 0.28 were considered. One mix without microsilica and nanosilica, 4 mixtures with 0.5%, 1%, 3% and 5% nanosilica replacement levels, 4 mixes with 5%, 7%, 10%, 15% of microsilica, and 4 mixtures with the combination of microsilica and nanosilica were investigated. According to the results of the experiments, the composite samples containing microsilica and nanosilica had better results than the samples containing only one of these particles. In fact, the results of 28-day tests showed that the combination of 10% microsilica and 1% nanosilica produced the best cementitious composite according to compressive, tensile and flexural tests.The compressive strength was 61.32 MPa, which was 44.69 percent higher than the control mix, the tensile strength was 4.319 MPa with 34.88 percent improvement, and the flexural strength was 6.971 MPa with 30.37 percent improvement from the control mix. Using more than 3 percent of microsilica had negative effects in all circumstances comparing to the control mix. For example, the ones containing 5 percent of nanosilica and without microsilica had the compressive strength of 37.41 MPa, which was 11.72 percent lower than the control mix.

کلیدواژه‌ها [English]

  • Microsilica
  • Cementitious composite
  • fiber
  • Nanosilica
  • Polypropylene
[1] Mazloom, M., & Salehi, H. (2018). The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete. Paper presented at the IOP Conference Series: Materials Science and Engineering.
[2] Salehi, H., & Mazloom, M. (2019). Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete. Construction and Building Materials, 222, 622-632.
[3] Kaffetzakis, M., & Papanicolaou, C. C. (2016). Lightweight aggregate self-compacting concrete (LWASCC) semi-automated mix design methodology. Construction and Building Materials, 123, 254-260.
[4] Czarnecki, L., & Łukowski, P. (2010). Polymer-cement concretes. Cement Wapno Beton, 5, 243-258.
[5] Ramachandran, V. S. (1996). Concrete admixtures handbook: properties, science and technology: William Andrew.
[6] Elahi, A., Basheer, P., Nanukuttan, S., & Khan, Q. (2010). Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Construction and Building Materials, 24(3), 292-299.
[7] Ahari, R. S., Erdem, T. K., & Ramyar, K. (2015). Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Construction and Building Materials, 79, 326-336.
[8] Mazloom, M., Ramezanianpour, A., & Brooks, J. (2004). Effect of silica fume on mechanical properties of high-strength concrete. Cement and Concrete Composites, 26(4), 347-357.
[9] Li, H., Xiao, H.-g., Yuan, J., & Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites Part B: Engineering, 35(2), 185-189.
[10] Nazari, A., & Riahi, S. (2010). Microstructural, thermal, physical and mechanical behavior of the self compacting concrete containing SiO2 nanoparticles. Materials Science and Engineering: A, 527(29-30), 7663-7672.
[11] Khaloo, A., Mobini, M. H., & Hosseini, P. (2016). Influence of different types of nano-SiO2 particles on properties of high-performance concrete. Construction and Building Materials, 113, 188-201.
[12] Naniz, O. A., & Mazloom, M. (2018). Effects of colloidal nano-silica on fresh and hardened properties of self-compacting lightweight concrete. Journal of Building Engineering, 20, 400-410.
[13] Naniz, O. A., & Mazloom, M. (2019). Assessment of the influence of micro-and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design. Asian Journal of Civil Engineering, 20(1), 57-70.
[14] Horszczaruk, E., Mijowska, E., Cendrowski, K., Mijowska, S., & Sikora, P. (2013). The influence of nanosilica with different morphology on the mechanical properties of cement mortars. Cem. Lime Concr, 1, 24-32.
[15] Horszczaruk, E., Mijowska, E., Cendrowski, K., & Sikora, P. (2014). Influence of the new method of nanosilica addition on the mechanical properties of cement mortars. Cement Wapno Beton, 5, 308-315.
[16] Quercia, G., Spiesz, P., Hüsken, G., & Brouwers, J. (2012). Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures. Paper presented at the Proceedings of the International Congress on Durability of Concrete (ICDC 2012).
[17] Quercia, G., Spiesz, P., Hüsken, G., & Brouwers, J. (2012). Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures. Paper presented at the Proceedings of the International Congress on Durability of Concrete (ICDC 2012).
[18] Sheldon, R. P. (1982). Composite polymeric materials: Applied Science London.
[19] Martínez‐Barrera, G., Vigueras‐Santiago, E., Hernández‐López, S., Martínez‐Barrera, G., Brostow, W., & Menchaca‐Campos, C. (2005). Mechanical improvement of concrete by irradiated polypropylene fibers. Polymer Engineering & Science, 45(10), 1426-1431.
[20] Quercia, G., Spiesz, P., Hüsken, G., & Brouwers, J. (2012). Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures. Paper presented at the Proceedings of the International Congress on Durability of Concrete (ICDC 2012).
[21] Mazloom, M., & Ranjbar, A. (2010). Relation between the workability and strength of self-compacting concrete. Paper presented at the Proceedings of 35th Conference on our world in concrete & structures, Singapore, 315-322.
[22] Mazloom, M., & Miri, M.S. (2017). Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete. Advances in Concrete Construction, 5(2), 87-99.
[23] Mazloom, M., Saffari, A., & Mehrvand, M. (2015). Compressive, shear and torsional strength of beams made of self-compacting concrete. Computers and Concrete, 15(6), 935-950.
[24] Mazloom, M., Allahabadi, A., & Karamloo, M. (2017). Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC. Advances in Concrete Construction, 5(6), 587-611.
[25] Mazloom, M., Homayooni, S.M., & Miri, S.M. (2018). Effect of rock flour type on rheology and strength of self-compacting lightweight concrete. Computers and Concrete, 21(2), 199-207.
[26] Karamloo, M., Mazloom, M., & Payganeh, G. (2017). Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stress-based approach. Materials Today Communications, 13, 36-45.
[27] Mazloom, M., Soltani, A., Karamloo, M., Hasanloo, A., & Ranjbar, A. (2018). Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete. Advances in Material Research, 7(1), 407-434.
[28] Naniz, O. A., & Mazloom, M. (2019). Fracture behavior of self-compacting semi-lightweight concrete containing nano-silica. Advances in Structural Engineering, 22(10), 2264-2277.
[29] Salehi, H., & Mazloom, M. (2018). Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete. Magazine of Concrete Research, 71(13), 665-679.
[30] Mazloom, M., & Miri, M. (2016). Effects of magnetic water on strength and workability of high performance concrete. Journal of Structural and Construction Engineering, 3(2), 30-411.
[31] Mazloom, M., & Allahabadi, A., & M. Karamloo, M. (2017) Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC, Advances in concrete construction, 5(6) 587-611.