ارزیابی کفایت فاصله جدایی بین قاب‌های ساختمانی با در نظر گرفتن اثرات اندرکنش سازه-خاک-سازه و استفاده از الگوریتم بهینه‌سازی ازدحام ذرات

نوع مقاله : علمی - پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد مهندسی زلزله، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

2 استادیار مهندسی زلزله، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران

چکیده

از آنجایی که عموماً در مناطق با جمعیت بالا و شهرهای بزرگ جهت استفاده حداکثری از زمین، ساختمان‌ها بدون فاصله و یا با فاصله ناکافی از یکدیگر ساخته می‌شوند، لذا طی زلزله‌های شدید، بر اثر ارتعاش غیر هم‌فاز سازه‌های مجاور (که دارای فاصله کافی از یکدیگر نمی‌باشند) و در نظر نگرفتن اثرات خاک، پدیده ضربه اتفاق می‌افتد. طبیعی‌ترین راه برای جلوگیری از ضربه، تأمین فاصله کافی بین سازه‌های مجاور می‌باشد. در مقاله‌ی حاضر، مقدار فاصله پیشنهادی استاندارد 2800 ایران بین دو سازه‌ی مجاور هم برای مقابله با پدیده ضربه با استفاده از آنالیز تاریخچه زمانی مدل‌های سازه-خاک-سازه مورد ارزیابی قرار گرفته است. به این منظور، ارزیابی رفتار لرزه‌ای سازه‌های 3، 6 و 12 طبقه‌ی 3 و 5 دهانه، واقع بر خاک‌های نوع I و III انجام شده و برای تحلیل از 6 رکورد زمین‌لرزه با سطوح خطر زلزله متفاوت استفاده شده‌است. این سازه‌ها در نرم‌افزار OpenSees مدلسازی شدند سپس برای به دست آوردن فاصله‌ی بهینه‌ی بین سازه‌ها از الگوریتم PSO استفاده شد که کد این الگوریتم در نرم‌افزار MATLAB نوشته شد و با نرم‌افزار OpenSees مرتبط شد و پس از رسیدن به شرط همگرایی، مقدار فاصله‌ی بهینه ارائه شد و با مقدار فاصله‌ی پیشنهاد شده در استاندارد 2800 مورد مقایسه قرار گرفت. نتایج حاکی از آن است که مقدار فاصله پیشنهاد شده در استاندارد 2800 برای زلزله‌های با سطح خطر بالا کفایت لازم را ندارد و مناسب نمی‌باشد و با توجه به شرایط خاک، سازه‌ها و زلزله امکان برخورد وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The adequacy of the separation gap between the adjacent structural frames considering the effects of structure-soil-structure- interaction and using particle swarm optimization algorithm

نویسندگان [English]

  • Saeideh Amini-Moghaddam 1
  • Mohammad Iman Khodakarami 2
1 Department of Earthquake Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Semnan University
چکیده [English]

Since, generally, in high population areas and large cities for maximum use of land, buildings are constructed without distances or with insufficient distance, thus, during severe earthquakes, due to unbalanced vibration of the structure Adjacent bodies (which do not have enough distance from one another) and without considering the effects of the soil, the impact phenomenon occurs. The most natural way to avoid impact is to provide sufficient distance between adjacent structures. In the present article, the proposed distance between the standard 2800 Iran between two adjacent structures is also evaluated for the impact of impact phenomena using time histories analysis of structural-soil-structural models. To this end, evaluation of seismic behavior of structures 3, 6, and 12 of 3rd and 5th craters on type I and III soils was performed and for analysis of 6 earthquake records with different earthquake hazard levels Has been used. These structures were modeled in the OpenSees software. Then, to obtain an optimum distance between the structures, the PSO algorithm was used, the code of this algorithm was written in MATLAB software and connected with the OpenSees software. After reaching the convergence condition, the optimum interval was presented and compared with the proposed interval in the standard 2800. The results indicate that the proposed distance in standard 2800 for high-risk earthquakes is not adequate and is not suitable and, given the soil conditions, structures and earthquakes, there is a possibility of collision.

کلیدواژه‌ها [English]

  • Structure-Soil-Structure-Interaction (SSSI)
  • Separation gap between two adjacent structure
  • Time history analysis
  • Particle Swarm Optimization (PSO)
  • Special moment resistance frame
[1] Yousefi Nejad, Mohammad. (2010). Investigating the effect of soil and structure interaction on the rigidity of seismic response of steel with linear and nonlinear analysis of time history. Tarbiat Moalem University of Tehran.
[2] Davis. R.O. (1992). Pounding of Buildings Modeled by an Impact Oscillator. Earthquake Engineering and Structural Dynamics, 21. pp. 253-274.
[3] Nikkhoo, Ali. and Faramarzi, Majid. (2012). Investigation of Minimum Cutting Leak in Fixed Steel Frame Structures by Nonlinear Chronological Time Analysis. Seismology Research Journal and Earthquake Engineering. 15th Year. No. 3. Autumn 91.
[4] Anagnostopoulos, Stavros. (1988). Pounding of buildings in series during earthquakes. Earthquake Engineering and Structural Dynamics, 16, 443-456.
[5] Barros, Rui Carneiro. and Khatami, Seyed Mohammad. (2012) Importance of separation distance on building pounding under near-fault ground motion, using the Iranian Earthquake Code. 9th International Congress on Civil Engineering, Isfahan University of Technology (IUT), Isfahan, Iran.
[6] Westermo, Bruce. (1989). The dynamics of interstructural connection to prevent pounding. Earthquake Engineering and Structural Dynamics, 18, 687-699.
[7] Jeng, Van. Kasai, Kazuhiko. and Maison, Bruce F. (1992). A spectral difference method to estimate building separations to avoid pounding. Earthquake Spectra, 8, 201-223.
[8] Hao, Hong. and Shen, Jay. (2001). Estimation of relative displacement of two adjacent asymmetric structures. Earthquake engineering & structural dynamics, 30(1): 81-96.
[9] Jankowski, Robert. (2008). Earthquake-induced pounding between equal heights buildings with substantially different dynamic properties. Engineering Structures, 30, 2818-2829.
[10] Lopez-Garcia, Diego. and Soong, T.T. (2009). Assessment of the separation necessary to prevent seismic pounding between linear structural systems. Probabilistic Engineering Mechanics, 24, 210-223.
[11] Lopez-Garcia, Diego. and Soong, T.T. (2009). Evolution of current criteria in predicting the necessary to prevent seismic pounding between nonlinear hysteretic structural systems. Engineering Structures, 31, 1217-1229.
[12] Penzien, Joseph. (1997). Evaluation of building separation distance required to prevent pounding during strong earthquakes. Earthquake engineering & structural dynamics, 26(8): 849-858.
[13] Naserkhaki, Sadegh. and El-Rich, Marwan. and Abdul Aziz, Farah N.A. and Pourmohammad, Hassan. (2013). Separation Gap, A critical factor in earthquake induced pounding between adjacent buildings. ASIAN Journal of Civil Engineering (BHRC), 14(6): 881-898.
[14] Building and Housing Research Center. (2005). Design of Buildings against Earthquake. Standard 2800. Fourth Edition of Tehran.
[15] Jamali Moghaddam, Mohammad. and Hajiannya, Alborz. and Moeidi, Hossein. and Nazem, Ramin, (2016). Application of Boundary Bounds in Geotechnical Engineering. 3th International Conference on New Research Achievements in Civil Engineering, Architecture and Urban Management. Tehran. International Federation of Inventors of the World (IFIA). Applied Scientific University.
[16] Livaoglu, Ramazan. (2008). Investigation of seismic behavior of fluid–rectangular tank–soil/foundation systems in frequency domain. Soil Dynamics and Earthquake Engineering, 28(2): 132-146.
[17] FEMA-356. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Report FEMA-356. Washington (DC): Federal Emergency Management Agency.
[18] Olariu, Stephan and Zomaya, Albert. (2006). Handbook of Bioinspired Algorithms and Applications. Taylor & FrancisGroup, LLC Press.
[19] Glover, Fred. and Kochenberger, Gary. (2003). Hanbook of Metaheuristics. Kluwer Academic Publishers.
[20] Siarry, Patrick. (2006). Metaheuristics for Hard Optimizations. Springer-Verlag Berlin Heidelberg.
[21] Hoorfar, Ahmad. (2007). Evolutionary Programming in Electromagnetic Optimization, IEEE Transactions on Antennas and Propagation, vol 55, no. 3.
[22] Qing, Anyong. (2003). Electromagnetic Inverse Scattering of Multiple Two-Dimensional Perfectly Conducting Objects by the Differential Evolution Strategy, IEEE Transactions on Antennas and Propagation, vol 51, no. 6.
[23] Raychowdhury, Prishati. and Ray-Chaudhuri, Samit. (2015). Seismic response of nonstructural components supported by a 4-story SMRF: Effect of nonlinear soil–structure interaction. Structures, Elsevier.